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Preface

Continuing advances in chip technology, such as the ability to place more
transistors on the same die (together with increased operating speeds) have
opened new opportunities in embedded applications, breaking new ground in
the domains of communication, multimedia, networking and entertainment.
New consumer products, together with increased time-to-market pressures have
created the need for rapid exploration tools to evaluate candidate architectures
for System-On-Chip (SOC) solutions. Such tools will facilitate the introduction
of new products customized for the market and reduce the time-to-market for
such products.

While the cost of embedded systems was traditionally dominated by the
circuit production costs, the burden has continuously shifted towards the design
process, requiring a better design process, and faster turn-around time. In
the context of programmable embedded systems, designers critically need the
ability to explore rapidly the mapping of target applications to the complete
system. Moreover, in today’s embedded applications, memory represents a
major bottleneck in terms of power, performance, and cost.

The near-exponential growth in processor speeds, coupled with the slower
growth in memory speeds continues to exacerbate the traditional processor-
memory gap. As a result, the memory subsystem is rapidly becoming the
major bottleneck in optimizing the overall system behavior in the design of
next generation embedded systems. In order to match the cost, performance,
and power goals, all within the desired time-to-market window, a critical aspect
is the Design Space Exploration of the memory subsystem, considering all
three elements of the embedded memory system: the application, the memory
architecture, and the compiler early during the design process.

This book presents such an approach, where we perform Hardware/Software
Memory Design Space Exploration considering the memory access patterns in
the application, the Processor-Memory Architecture as well as a memory-aware
compiler to significantly improve the memory system behavior. By exploring a
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design space much wider than traditionally considered, it is possible to generate
substantial performance improvements, for varied cost and power footprints.

In particular, this book addresses efficient exploration of alternative memory
architectures, assisted by a "compiler-in-the-loop" that allows effective match-
ing of the target application to the processor-memory architecture. This new
approach for memory architecture exploration replaces the traditional black-
box view of the memory system and allows for aggressive co-optimization of
the programmable processor together with a customized memory system.

The book concludes with a set of experiments demonstrating the utility of
our exploration approach. We perform architecture and compiler exploration
for a set of large, real-life benchmarks, uncovering promising memory con-
figurations from different perspectives, such as cost, performance and power.
Moreover, we compare our Design Space Exploration heuristic with a brute
force full simulation of the design space, to verify that our heuristic success-
fully follows a true pareto-like curve. Such an early exploration methodology
can be used directly by design architects to quickly evaluate different design
alternatives, and make confident design decisions based on quantitative figures.

Audience
This book is designed for different groups in the embedded systems-on-chip

arena.
First, the book is designed for researchers and graduate students interested

in memory architecture exploration in the context of compiler-in-the-loop ex-
ploration for programmable embedded systems-on-chip.

Second, the book is intended for embedded system designers who are in-
terested in an early exploration methodology, where they can rapidly evaluate
different design alternatives, and customize the architecture using system-level
IP blocks, such as processor cores and memories.

Third, the book can be used by CAD developers who wish to migrate from
a hardware synthesis target to embedded systems containing processor cores
and significant software components. CAD tool developers will be able to
review basic concepts in memory architectures with relation to automatic com-
piler/simulator software toolkit retargeting.

Finally, since the book presents a methodology for exploring and optimizing
the memory configurations for embedded systems, it is intended for managers
and system designers who may be interested in the emerging embedded system
design methodologies for memory-intensive applications.
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Chapter 1

INTRODUCTION

1.1 Motivation

Recent advances in chip technology, such as the ability to place more transis-
tors on the same die (together with increased operating speeds) have opened new
opportunities in embedded applications, breaking new ground in the domains
of communication, multimedia, networking and entertainment. However, these
trends have also led to further increase in design complexity, generating tremen-
dous time-to-market pressures. While the cost of embedded systems was tradi-
tionally dominated by the circuit production costs, the burden has continuously
shifted towards the design process, requiring a better design process, and faster
turn-around time. In the context of programmable embedded systems, designers
critically need the ability to explore rapidly the mapping of target applications
to the complete system. Moreover, in today’s embedded applications, memory
represents a major bottleneck in terms of power, performance, and cost [Prz97].
According to Moore’s law, processor performance increases on the average by
60% annually; however, memory performance increases by roughly 10% annu-
ally. With the increase of processor speeds, the processor-memory gap is thus
further exacerbated [Sem98].

As a result, the memory system is rapidly becoming the major bottleneck in
optimizing the overall system behavior. In order to match the cost, performance,
and power goals in the targeted time-to-market, a critical aspect is the Design
Space Exploration of the memory subsystem, considering all three elements
of the embedded memory system: the application, the memory architecture,
and the compiler early during the design process. This book presents such
an approach, where we perform Hardware/Software Memory Design Space
Exploration considering the memory access patterns in the application, the
Processor-Memory Architecture as well as a memory-aware compiler, to sig-



Traditionally, while the design of programmable embedded systems has fo-
cused on extensive customization of the processor to match the application,
the memory subsystem has been considered as a black box, relying mainly on
technological advances (e.g., faster DRAMs, SRAMs), or simple cache hier-
archies (one or more levels of cache) to improve power and/or performance.
However, the memory system presents tremendous opportunities for hardware
(memory architecture) and software (compiler and application) customization,
since there is a substantial interaction between the application access patterns,
the memory architecture, and the compiler optimizations. Moreover, while
real-life applications contain a large number of memory references to a diverse
set of data structures, a significant percentage of all memory accesses in the ap-
plication are often generated from a few instructions in the code. For instance,
in Vocoder, a GSM voice coding application with 15,000 lines of code, 62%
of all memory accesses are generated by only 15 instructions. Furthermore,
these instructions often exhibit well-known, predictable access patterns, pro-
viding an opportunity for customization of the memory architecture to match
the requirements of these access patterns.

For general purpose systems, where many applications are targeted, the de-
signer needs to optimize for the average case. However, for embedded systems
the application is known apriori, and the designer needs to customize the sys-
tem for this specific application. Moreover, a well-matched embedded memory
architecture is highly dependent on the application characteristics. While de-
signers have traditionally relied mainly on cache-based architectures, this is
only one of many design choices. For instance, a stream-buffer may signifi-
cantly improve the system behavior for applications that exhibit stream-based
accesses. Similarly, the use of linked-list buffers for linked-lists, or SRAMs for
small tables of coefficients, may further improve the system. However, it is not
trivial to determine the most promising memory architecture matched for the
target application.

Traditionally, designers begin the design flow by evaluating different archi-
tectural configurations in an ad-hoc manner, based on intuition and experience.
After fixing the architecture, and a compiler development phase lasting at least
an additional several months, the initial evaluation of the application could be
performed. Based on the performance/power figures reported at this stage, the
designer has the opportunity to improve the system behavior, by changing the
architecture to better fit the application, or by changing the compiler to better

1.2 Memory Architecture Exploration for Embedded
Systems

nificantly improve the memory system behavior. By exploring a design space
much wider than traditionally considered, it is possible to generate substantial
performance improvements, for varied cost and power footprints.

MEMORY ARCHITECTURE EXPLORATION2



3Introduction

account for the architectural features of the system. However, in this iterative
design flow, such changes are very time-consuming. A complete design flow
iteration may require months.

Alternatively, designers have skipped the compiler development phase, eval-
uating the architecture using hand-written assembly code, or an existing com-
piler for a similar Instruction Set Architecture (ISA), assuming that a processor-
specific compiler will be available at tape-out. However, this may not generate
true performance measures, since the impact of the compiler and the actual
application implementation on the system behavior may be significant. In a
design space exploration context, for a modern complex system it is virtually
impossible to consider by analysis alone the possible interactions between the
architecture features, the application and the compiler. It is critical to employ
a compiler-in-the-loop exploration, where the architectural changes are made
visible to and exploited by the compiler to provide meaningful, quantitative
feedback to the designer during architectural exploration.

By using a more systematic approach, where the designer can use the ap-
plication information to customize the architecture, providing the architectural
features to the compiler and rapidly evaluate different architectures early in
the design process may significantly improve the design turn-around time. In
this book we present an approach that simultaneously performs hardware cus-
tomization of the memory architecture, together with software retargeting of
the memory-aware compiler optimizations. This approach can significantly
improve the memory system performance for varied power and cost profiles for
programmable embedded systems.

Let us now examine our proposed memory system exploration approach. Fig-
ure 1.1 depicts three aspects of the memory sub-system that contribute towards



the programmable embedded system’s overall behavior: (I) the Application,
(II) the Memory Architecture, and (III) the Memory Aware Compiler.

(I) The Application, written in C, contains a varied set of data structures and
access patterns, characterized by different types of locality, storage and transfer
requirements.

(II) One critical ingredient necessary for Design Space Exploration, is the
ability to describe the memory architecture in a common description language.
The designer or an exploration “space-walker” needs to be able to modify
this description to reflect changes to the processor-memory architecture dur-
ing Design Space Exploration. Moreover, this language needs to be under-
stood by the different tools in the exploration flow, to allow interaction and
inter-operability in the system. In our approach, the Memory Architecture,
represented in an Architectural Description Language (such as EXPRESSION

[MGDN01]) contains a description of the processor-memory ar-
chitecture, including the memory modules (such as DRAMs, caches, stream
buffers, DMAs, etc.), their connectivity and characteristics.

(III) The Memory-Aware Compiler uses the memory architecture descrip-
tion to efficiently exploit the features of the memory modules (such as access
modes, timings, pipelining, parallelism). It is crucial to consider the inter-
action between all the components of the embedded system early during the
design process. Designers have traditionally explored various characteristics of
the processor, and optimizing compilers have been designed to exploit special
architectural features of the CPU (e.g., detailed pipelining information). How-
ever, it is also important to explore the design space of Memory Architecture
with memory-library-aware compilation tools that explicitly model and exploit
the high-performance features of such diverse memory modules. Indeed, partic-
ularly for the memory system, customizing the memory architecture, (together
with a more accurate compiler model for the different memory characteristics)
allows for a better match between the application, the compiler and the memory
architecture, leading to significant performance improvements, for varied cost
and energy consumption.

Figure 1.2 presents the flow of the overall methodology. Starting from an
application (written in C), a Hardware/ Software Partitioning step partitions the
application into two parts: the software partition, which will be executed on the
programmable processor and the hardware partition, which will be implemented
through ASICs. Prior work has extensively addressed Hardware/ Software
partitioning and co-design [GVNG94, Gup95]. This book concentrates mainly
on the Software part of the system, but also discusses our approach in the context
of a Hardware/Software architecture (Section 4.4).

The application represents the starting point for our memory exploration.
After estimating the memory requirements, we use a memory/connectivity
IP library to explore different memory and connectivity architectures (APEX

MEMORY ARCHITECTURE EXPLORATION4



Introduction 5

[GDN01b] and ConEx [GDN02]). The memory/connectivity architectures se-
lected are then used to generate the compiler/simulator toolkit, and produce the
pareto-like configurations in different design spaces, such as cost/performance
and power. The resulting architecture in Figure 1.2 contains the programmable
processor, the synthsized ASIC, and an example memory and connectivity ar-
chitecture.

We explore the memory system designs following two major “exploration
loops”: (I) Early Memory Architecture Exploration, and (II) Compiler-in-the-
loop Memory Exploration.

(I) In the first “exploration loop” we perform early Memory and Connectivity
Architecture Exploration based on the access patterns of data in the application,



by rapidly evaluating the memory and connectivity architecture alternatives, and
selecting the most promising designs. Starting from the input application (writ-
ten in C), we estimate the memory requirements, extract, analyze and cluster
the predominant access patterns in the application, and perform Memory and
Connectivity Architecture Exploration, using modules from a memory Intel-
lectual Property (IP) library, such as DRAMs, SRAMs, caches, DMAs, stream
buffers, as well as components from a connectivity IP library, such as standard
on-chip busses (e.g., AMBA busses [ARM]), MUX-based connections, and
off-chip busses. The result is a customized memory architecture tuned to the
requirements of the application.

(II) In the second “exploration loop”, we perform detailed evaluation of
the selected memory architectures, by using a Memory Aware Compiler to
efficiently exploit the characteristics of the memory architectures, and a Mem-
ory Aware Simulator, to provide feedback to the designer on the behavior of
the complete system, including the memory architecture, the application, and
the Memory-Aware Compiler. We use an Architectural Description Language
(ADL) (such as EXPRESSION to capture the memory architecture,
and retarget the Memory Aware Software Toolkit, by generating the information
required by the Memory Aware Compiler and Simulator. During Design Space
Exploration (DSE), each explored memory architecture may exhibit different
characteristics, such as number and types of memory modules, their connectiv-
ity, timings, pipelining and parallelism. We expose the memory architecture to
the compiler, by automatically extracting the architectural information, such as
memory timings, resource, pipelining and parallelism from the ADL description
of the processor-memory system.

Through this combined access pattern based early rapid evaluation, and
detailed Compiler-in-the-loop analysis, we cover a wide range of design alter-
natives, allowing the designer to efficiently target the system goals, early in the
design process without simulating the full design space.

Hardware/Software partitioning and codesign has been extensively used to
improve the performance of important parts of the code, by implementing them
with special purpose hardware, trading off cost of the system against better be-
havior of the computation [VGG94, Wol96a]. It is therefore important to apply
this technique to memory accesses as well. Indeed, by moving the most active
access patterns into specialized memory hardware (in effect creating a set of
“memory coprocessors”), we can significantly improve the memory behavior,
while trading off the cost of the system. We use a library of realistic memory
modules, such as caches, SRAMs, stream buffers, and DMA-like memory mod-
ules that bring the data into small FIFOs, to target widely used data structures,
such as linked lists, arrays, arrays of pointers, etc.

This two phase exploration methodology allows us to explore a space sig-
nificantly larger than traditionally considered. Traditionally, designers have

MEMORY ARCHITECTURE EXPLORATION6



7Introduction

addressed the processor-memory gap by using simple cache hierarchies, and
mainly relying on the designer’s intuition in choosing the memory configuration.
Instead our approach allows the designer to systematically explore the memory
design space, by selecting memory modules and the connectivity configuration
to match the access patterns exhibited by the application. The designer is thus
able to select the most promising memory and connectivity architectures, using
diverse memory modules such as DRAMs, SRAMs, caches, stream buffers,
DMAs, etc. from a memory IP library, and standard connectivity components
from a connectivity IP library.

1.3 Book Organization
The rest of this book is organized as follows:

Chapter 2: Related Work. We outline previous and related work in the do-
main of memory architecture exploration and optimizations for embedded
systems.

Chapter 3: Early Memory Size Estimation. In order to drive design space
exploration of the memory sub-system, we perform early estimation of the
memory size requirements for the different data structures in the application.

Chapter 4: Memory Architecture Exploration. Starting from the most ac-
tive access patterns in the embedded application, we explore the memory and
connectivity architectures early during the design flow, evaluating and se-
lecting the most promising design alternatives, which are likely to best match
the cost, performance, and power goals of the system. These memory and
connectivity components are selected from existing Intellectual Property
(IP) libraries.

Chapter 5: Memory-aware Compilation. Contemporary memory components
often employ special access modes (e.g., page-mode and burst-mode) and or-
ganizations (e.g., multiple banks and interleaving) to facilitate higher mem-
ory throughput. We present an approach that exposes such information to
the Compiler through an Architecture Description Language (ADL). We
describe how a memory-aware compiler can exploit the detailed timing and
protocols of these memory modules to hide the latency of lengthy memory
operations and boost the peformance of the applications.

Chapter 6: Experiments. We present a set of experiments demonstrating the
utility of our Hardware/Software Memory Customization approach.

Chapter 7: Summary and Future Work. We present our conclusions, and
possible future directions of research, arising from this work.
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Chapter 2

RELATED WORK

In this chapter we outline previous approaches related to memory architec-
ture design. Whereas there has been a very large body of work on the design of
memory subsystems we focus our attention on work related to customization of
the memory architecture for specific application domains. In relation to memory
customization there has been work done in four main domains: (I) High-level
synthesis, (II) Cache locality optimizations, (III) Computer Architecture, and
(IV) Disk file systems and databases. We briefly describe these approaches;
detailed comparisons with individual techniques presented in this book are de-
scribed in ensuing chapters. In the context of embedded and special-purpose
programmable architectures, we also outline work done in heterogeneous mem-
ory architectures and provide some examples.

2.1 High-Level Synthesis
The topic of memory issues in high-level synthesis has progressed from con-

siderations in register allocation, through issues in the synthesis of foreground
and background memories. In the domain of High-Level Synthesis, Catthoor
et al. address multiple problems in the memory design, including
source level transformations to massage the input application, and improve the
overall memory behavior, and memory allocation. De Greef et al. [DCD97]
presents memory size minimization techniques through code reorganization
and in-place mapping. They attempt to reuse the memory locations as much as
possible by replacing data which is no longer needed with newly created values.
Such memory reuse requires the alteration of the addressing calculation (e.g.,
in the case of arrays), which they realize through code transformations. Balasa
et al. [BCM95] present memory estimation and allocation approaches for large
multi-dimensional arrays for non-procedural descriptions. They determine the
loop order and code schedule which results in the lowest memory requirement.
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Wuytack et al. present an approach to manage the memory band-
width by increasing memory port utilization, through memory mapping and
code reordering optimizations. They perform memory allocation by packing
the data structures according to their size and bitwidth into memory modules
from a library, to minimize the memory cost.

Bakshi et al. [BG95] perform memory exploration, combining memory
modules using different connectivity and port configurations for pipelined DSP
systems.

In the context of custom hardware synthesis, several approaches have been
used to model and exploit memory access modes. Ly et. al. [LKMM95] use
behavioral templates to model complex operations (such as memory reads and
writes) in a CDFG, by enclosing multiple CDFG nodes and fixing their relative
schedules (e.g., data is asserted one cycle after address for a memory write
operation).

Panda et al. [PDN99] have addressed customization of the memory archi-
tecture targeting different cache configurations, or alternatively using on-chip
scratch pad SRAMs to store data with poor cache behavior. Moreover, Panda
et. al. [PDN98] outline a pre-synthesis approach to exploit efficient memory
access modes, by massaging the input application (e.g., loop unrolling, code
reordering) to better match the behavior to a DRAM memory architecture ex-
hibiting page-mode accesses. Khare et. al. [KPDN98] extend this work to
Synchronous and RAMBUS DRAMs, using burst-mode accesses, and exploit-
ing memory bank interleaving.

Recent work on interface synthesis [COB95], [Gup95] present techniques to
formally derive node clusters from interface timing diagrams. These techniques
can be applied to provide an abstraction of the memory module timings required
by the memory aware compilation approach presented in Chapter 5.

2.2 Cache Optimizations

Cache optimizations improving the cache hit ratio have been extensively
addressed by both the embedded systems community [PDN99])
and the traditional architecture/compiler community ([Wol96a]). Loop trans-
formations (e.g., loop interchange, blocking) have been used to improve both
the temporal and spatial locality of the memory accesses. Similarly, memory
allocation techniques (e.g., array padding, tiling) have been used in tandem with
the loop transformations to provide further hit ratio improvement. However,
often cache misses cannot be avoided due to large data sizes, or simply the
presence of data in the main memory (compulsory misses). To efficiently use
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the available memory bandwidth and minimize the CPU stalls, it is crucial to
aggressively schedule the loads associated with cache misses1.

Pai and Adve [PA99] present a technique to move cache misses closer to-
gether, allowing an out-of-order superscalar processor to better overlap these
misses (assuming the memory system tolerates a large number of outstanding
misses).

The techniques we present in this book are complementary to the previous
approaches: we overlap cache misses with cache hits to a different cache line.
That is, while they cluster the cache misses to fit into the same superscalar
instruction window, we perform static scheduling to hide the latencies.

Cache behavior analysis predicts the number/moment of cache hits and
misses, to estimate the performance of processor-memory systems [AFMW96],
to guide cache optimization decisions [Wol96a], to guide compiler directed
prefetching [MLG92] or more recently, to drive dynamic memory sub-system
reconfiguration in reconfigurable architectures [JCMH99], The
approach presented in this book uses the cache locality analysis techniques pre-
sented in [MLG92], [Wol96a] to recognize and isolate the cache misses in the
compiler, and then schedule them to better hide the latency of the misses.

2.3 Computer Architecture
In the domain of Computer Architecture, [Jou90], [PK94] propose the use

of hardware stream buffers to enhance the memory system performance. Re-
configurable cache architectures have been proposed recently to
improve the cache behavior for general purpose processors, targeting a large
set of applications.

In the embedded and general purpose processor domain, a new trend of in-
struction set modifications has emerged, targeting explicit control of the memory
hierarchy through, for instance, prefetch, cache freeze, and evict-block oper-
ations (e.g., TriMedia 1100, StrongArm 1500, IDT R4650, Intel IA 64, Sun
UltraSPARC III, etc. [hot]). For example, Harmsze et. al. [HTvM00] present
an approach to allocate and lock the cache lines for stream based accesses, to
reduce the interference between different streams and random CPU accesses,
and improve the predictability of the run-time cache behavior.

Another approach to improve the memory system behavior used in gen-
eral purpose processors is data prefetching. Software prefetching [CKP91],
[GGV90], [MLG92], inserts prefetch instructions into the code, to bring data
into the cache early, and improve the probability it will result in a hit. Hardware
prefetching [Jou90], [PK94] uses hardware stream buffers to feed the cache with
data from the main memory. On a cache miss, the prefetch buffers provide the

1In the remaining we refer to the scheduling of such loads as “scheduling of cache misses”



12 MEMORY ARCHITECTURE EXPLORATION

required cache line to the cache faster than the main memory, but comparatively
slower than the cache hit access.

In the domain of programmable SOC architectural exploration, recently sev-
eral efforts have used Architecture Description Languages (ADLs) to drive gen-
eration of the software toolchain (compilers, simulators, etc.) ([HD97], [Fre93],
[Gyl94], [LM98]). However, most of these approaches have fo-
cused primarily on the processor and employ a generic model of the memory
subsystem. For instance, in the Trimaran compiler [Tri97], the scheduler uses
operation timings specified on a per-operation basis in the MDes ADL to better
schedule the applications. However they use fixed operation timings, and do
not exploit efficient memory access modes. Our approach uses EXPRESSION

a memory-aware ADL that explicitly provides a detailed memory
timing to the compiler and simulator.

The work we present in this book differs significantly from all the related
work in that we simultaneously customize the memory architecture to match the
access patterns in the application, while retargeting the compiler to exploit fea-
tures of the memory architecture. Such an approach allows the system designer
to explore a wide range of design alternatives, and significantly improve the
system performance and power for varied cost configurations. Detailed com-
parison with individual approaches are presented in each chapter that follows
in this book.

2.4 Disk File Systems
The topic of memory organization for efficient access of database objects

has been studied extensively in the past. In the file systems domain, there
have been several approaches to improve the file system behavior based on the
file access patterns exhibited by the application. Patterson et. al.
advocate the use of hints describing the application access pattern to select par-
ticular prefetching and caching policies in the file system. Their work supports
sequential accesses and an explicit list of accesses, choosing between prefetch-
ing hinted blocks, caching hinted blocks, and caching recently used un-hinted
data. Their informed prefetching approach generates 20% to 83% performance
improvement, while the informed caching generates a performance improve-
ment of up to 42%. Parsons et. al [PUSS] present an approach allowing the
application programmer to specify the file I/O parallel behavior using a set of
templates which can be composed to form more complex access patterns. They
support I/O templates such as meeting, log, report, newspaper, photocopy, and
each may have a set of attributes (e.g., ordering attributes: ordered, relaxed
and chaotic). The templates, described as an addition to the application source
code, improve the performance of the parallel file system.

Kotz et. al present an approach to characterize the I/O access
patterns for typical multiprocessor workloads. They classify them according
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to sequentiality, I/O request sizes, I/O skipped interval sizes, synchronization,
sharing between processes, and time between re-writes and re-reads. Sequen-
tiality classifies sequential and consecutive access patterns (sequential when
the next access is to an offset larger than the current one, and consecutive when
the next access is to the next offset), read/only, write/only and read/write. They
obtain significant performance improvements, up to 16 times faster than tradi-
tional file systems, and using up to 93% of the peak disk bandwidth.

While the design of high performance parallel file systems depends on the
understanding of the expected workload, there have been few usage studies of
multiprocessor file system patterns. Purakayashta et. al character-
ize access patterns in a file system workload on a Connection Machine CM-5 to
fill in this gap. They categorize the access patterns based on request size, sequen-
tiality (sequential vs. consecutive), request intervals (number of bytes skipped
between requests), synchronization (synchronous-sequential, asynchronous,
local-independent, synchronous-broadcast, global-independent), sharing (con-
currently shared, write shared), time between re-writes and re-reads, and give
various recommendations for optimizing parallel file system design.

The idea at the center of these file system approaches using the access pat-
terns to improve the file system behavior can be extrapolated to the memory
domain. In our approach we use the memory accesses patterns to customize
the memory system, and improve the match between the application and the
memory architecture.

2.5 Heterogeneous Memory Architectures

Memory traffic patterns vary significantly between different applications.
Therefore embedded system designers have long used heterogeneous memory
architectures in order to improve the system behavior.

The recent trend towards low-power architectures further drive the need for
exploiting customized memory subsystems that not only yield the desired per-
formance, but also do so within an energy budget. Examples of such hetero-
geneous memory architectures are commonly found in special-purpose pro-
grammable processors, such as multimedia processors, network processors,
DSP and even in general purpose processors; different memory structures, such
as on-chip SRAMs, FIFOs, DMAs, stream-buffers are employed as an alterna-
tive to traditional caches and off-chip DRAMs. However, designers have relied
mainly on intuition and previous experience, choosing the specific architecture
in an ad-hoc manner. In the following, we present examples of memory ar-
chitecture customization for the domain of network processors as well as other
contemporary heterogeneous memory architectures.
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2.5.1 Network Processors
Applications such as network processing place tremendous demands on

throughput; typically even high-speed traditional processors cannot keep up
with the high speed requirement. For instance, on a 10Gb/s (OC-192) link,
new packets arrive every 35ns. Within this time, each packet has to be verified,
classified, modified, before being delivered to the destination, requiring hun-
dreds of RISC instructions, and hundreds of bytes of memory traffic per packet.
We present examples of some contemporary network processors that employ
heterogeneous memory architectures.

For instance, an important bottleneck in packet processing is packet classifi-
cation [IDTS00]. As shown in Figure 2.1, packet classification involves several
steps: first the different fields of the incoming packet are read; then, for each
field a look-up engine is used to match the field to the corresponding policy
rules extracted from the policy rule database, and finally the result is generated.
Since the number of rules can be quite large (e.g., 1000 rules to 100,000 rules
for large classifiers [BV01]), the number of memory accesses required for each
packet is significant. Traditional memory approaches, using off-chip DRAMs,
or simple cache hierarchies are clearly not sufficient to sustain this memory
bandwidth requirement. In such cases, the use of special-purpose memory ar-
chitectures, employing memory modules such as FIFOs, on-chip memories,
and specialized transfer units are crucial in order to meet the deadlines.

Indeed, contemporary Network Processor implementations use different mem-
ory modules, such as on-chip SRAMs, FIFOs, CAMs, etc. to address the mem-
ory bottleneck. For instance the Intel Network Processor (NP) [mpr] contains
Content Addressable Memories (CAMs) and local SRAM memories, as well as
multiple register files (allowing communication with neighboring processors as
well as with off-chip memories), to facilitate two forms of parallelism: (I) Func-
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tional pipelining, where packets remain resident in a single NP while several
different functions are performed, and (II) Context pipelining, where packets
move from one micro-engine to another with each micro-engine performing a
single function on every packet in the stream. Similarly, the ClassiPI router
engine from PMCSierra [IDTS00] employs a CAM to store a database of rules,
and a FIFO to store the search results.

Another example of a network processor employing heterogeneous memory
organizations is the Lexra NetVortex PowerPlant Network Processor [mpr] that
uses a dual-ported SRAM together with a block-transfer engine for packet
receive and transmit, and block move to/from shared memory. Due to the fact
that networking code exhibits poor locality, they manage in software the on-chip
memory instead of using caches.

2.5.2 Other Memory Architecture Examples
DSP, embedded and general purpose processors also use various memory

configurations to improve the performance and power of the system. We present
some examples of current architectures that employ such non-traditional mem-
ory organizations.

Digital Signal Processing (DSP) architectures have long used memory orga-
nizations customized for stream-based access. Newer, hybrid DSP architectures
continue this trend with the use of both Instruction Set Architecture (ISA) level
and memory architecture customization for DSP applications. For instance,
Motorola’s Altivec contains prefetch instructions, which command 4 stream
channels to start prefetching data into the cache. The TI C6201 DSP Very Long
Instruction Word (VLIW) processor contains a fast local memory, a off-chip
main memory, and a Direct Memory Access (DMA) controller which allows
transfer of data between the on-chip local SRAM and the off-chip DRAM.
Furthermore page and burst mode accesses allow faster access to the DRAM.

In the domain of embedded and special-purpose architectures, memory sub-
systems are customized based on the characteristics and data types of the appli-
cations. For instance, Smart MIPS, the MIPS processor targeting Smart Cards,
provides reconfigurable instruction and data scratch pad memory. Determining
from an application what data structures are important to be stored on chip
and configuring the processor accordingly is crucial for achieving the desired
performance and power target. Aurora VLSI’s DeCaff [mpr] Java accelerator
uses a stack as well as a variables memory, backed by a data cache. The MAP-
CA [mpr] from Equator multimedia processor uses a Data Streamer with an
8K SRAM buffer to transfer data between the CPU, coding engine, and video
memory.

Heterogeneous memory organizations are also beginning to appear in main-
stream general-purpose processors. For instance, SUN UltraSparc III [hot] uses
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prefetch caches, as well as on-chip memories that allow a software-controlled
cache behavior, while PA 8500 from HP has prefetch capabilities, providing
instructions to bring the data earlier into the cache, to insure a hit.

2.6 Summary
In this chapter we briefly surveyed several approaches that employ cus-

tomized and heterogeneous memory architectures and organizations, in order
to achieve the desired performance or power budgets of specific application
domains.

The trend of such customization, although commonly used for embedded,
or domain specific architectures, will continue to influence the design of newer
programmable embedded systems. System architects will need to decide which
groups of memory accesses deserve decoupling from the computations, and cus-
tomization of both the memory organization itself, as well as the software inter-
face (e.g., ISA-level) modifications to support efficient memory behavior. This
leads to the challenging tasks of decoupling critical memory accesses from the
computations, scheduling such accesses (in parallel or pipelined) with the com-
putations, and the allocation of customized (special-purpose) memory transfer
and storage units to support the desired memory behavior. Typically such tasks
have been performed by system designers in an ad-hoc manner, using intu-
ition, previous experience, and limited simulation/exploration. Consequently
many feasible and interesting memory architectures are not considered. In the
following chapters we present a systematic strategy for exploration of this mem-
ory architecture space, giving the system designer improved confidence in the
choice of early, memory architectural decisions.



Chapter 3

EARLY MEMORY SIZE ESTIMATION †

3.1 Motivation
The high level design space exploration step is critical for obtaining a cost

effective implementation. Decisions at this level have the highest impact on the
final result.

A large class of applications (such as multimedia, DSP) exhibit complex
array processing. For instance, in the algorithmic specifications of image and
video applications the multidimensional variables (signals) are the main data
structures. These large arrays of signals have to be stored in on-chip and off-chip
memories. In such applications, memory often proves to be the most important
hardware resource. Thus it is critical to develop techniques for early estimation
of memory resources.

Early memory architecture exploration involves the steps of allocating dif-
ferent memory modules, partitioning the initial specification between different
memory units, together with decisions regarding the parallelism provided by
the memory system; each memory architecture thus evaluated exhibits a distinct
cost, performance and power profile, allowing the system designer to trade-off
the system performance against cost and energy consumption. To drive this
process, it is important to be able to efficiently predict the memory require-
ments for the data structures and code segments in the application. Figure 3.1
shows the early memory exploration flow of our overall methodology outlined
in Figure 1.2. As shown in Figure 3.1, during our exploration approach memory
size estimates are required to drive the exploration of memory modules.

*Prof. Florin Balasa (University of Illinois, Chicago) contributed to the work presented in this chapter
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We present a technique for memory size estimation, targeting procedural
specifications with multidimensional arrays, containing both instruction level
(fine-grain) and coarse- grain parallelism [BENP93], [Wol96b]. The impact
of parallelism on memory size has not been previously studied in a consistent
way. Together with tools for estimating the area of functional units and the
performance of the design, our memory estimation approach can be used in
a high level exploration methodology to trade-off performance against system
cost.

This chapter is organized as follows. Section 3.2 defines the memory size
estimation problem. Our approach is presented in Section 3.3. In Section 3.4
we discuss the influence of parallelism on memory size. Our experimental
results are presented in Section 3.5. Section 3.6 briefly reviews some major
results obtained in the field of memory estimation, followed by a summary in
Section 3.7.

3.2 Memory Estimation Problem
We define the problem of memory size estimation as follows: given an

input algorithmic specification containing multidimensional arrays, what is the
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number of memory locations necessary to satisfy the storage requirements of
the system?

The ability to predict the memory characteristics of behavioral specifications
without synthesizing them is vital to producing high quality designs with reason-
able turnaround. During the HW/SW partitioning and design space exploration
phase the memory size varies considerably. For example, in Figure 3.4, by as-
signing the second and third loop to different HW/SW partitions, the memory
requirement changes by 50% (we assume that array a is no longer needed and
can be overwritten). Here the production of the array b increases the memory by
50 elements, without consuming values. On the other hand, the loop producing
array c consumes 100 values (2 per iteration). Thus, it is beneficial to produce
the array c earlier, and reuse the memory space made available by array a. By
producing b and c in parallel, the memory requirement is reduced to 100.

Our estimation approach considers such reuse of space, and gives a fast es-
timate of the memory size. To allow high- level design decisions, it is very
important to provide good memory size estimates with reasonable computation
effort, without having to perform complete memory assignment for each design
alternative. During synthesis, when the memory assignment is done, it is neces-
sary to make sure that different arrays (or parts of arrays) with non-overlapping
lifetimes share the same space. The work in [DCD97] addresses this problem,
obtaining results close to optimal. Of course, by increasing sharing between
different arrays, the addressing becomes more complex, but in the case of large
arrays, it is worth increasing the cost of the addressing unit in order to reduce
the memory size.

Our memory size estimation approach uses elements of the polyhedral data-
flow analysis model introduced in [BCM95], with the following major differ-
ences: (1) The input specifications may contain explicit constructs for parallel
execution. This represents a significant extension required for design space
exploration, and is not supported by any of the previous memory estimation
/allocation approaches mentioned in Section 2. (2) The input specifications are
interpreted procedurally, thus considering the operation ordering consistent with
the source code. Most of the previous approaches operated on non-procedural
specifications, but in practice a large segment of embedded applications market
(e.g., GSM Vocoder, MPEG, as well as benchmark suites such as DSPStone
[ZMSM94], EEMBC [Emb]) operate on procedural descriptions, so we con-
sider it is necessary to accommodate also these methodologies.

Our memory size estimation approach handles specifications containing
nested loops having affine boundaries (the loop boundaries can be constants
or linear functions of outer loop indexes). The memory references can be
multidimensional signals with (complex) affine indices. The parallelism is
explicitly described by means of cobegin-coend and forall constructs. This
parallelism could be described explicitly by the user in the input specification,



20 MEMORY ARCHITECTURE EXPLORATION

or could be generated through parallelizing transformations on procedural code.
We assume the input has the single-assignment property [CF91] (this could be
generated through a preprocessing step).

The output of our memory estimation approach is a range of the memory
size, defined by a lower- and upper-bound. The predicted memory size for the
input application lies within this range, and in most of the cases it is close to
the lower-bound (see the experiments). Thus, we see the lower bound as a
prediction of the expected memory size, while the upper bound gives an idea of
the accuracy of the prediction (i.e., the error margin). When the two bounds are
equal, an "exact" memory size evaluation is achieved (by exact we mean the best
that can be achieved with the information available at this step, without doing
the actual memory assignment). In order to handle complex specifications, we
provide a mechanism to trade-off the accuracy of predicting the storage range
against the computational effort.

3.3 Memory Size Estimation Algorithm
Our memory estimation approach (called MemoRex) has two parts. Starting

from a high level description which may contain also parallel constructs, the
Memory Behavior Analysis (MBA) phase analyzes the memory size variation,
by approximating the memory trace, as shown in Figure 3.2, using a covering
bounding area. Then, the Memory Size Prediction (MSP) computes the memory
size range, which is the output of the estimator. The backward dotted arrow in
Figure 3.2 shows that the accuracy can be increased by subsequent passes.

The memory trace represents the size of the occupied storage in each logical
time step during the execution of the input application. The continuous line in
the graphic from Figure 3.2 represents such a memory trace. When dealing with
complex specifications, we do not determine the exact memory trace due to the
high computational effort required. A bounding area encompassing the memory
trace - the shaded rectangles from the graphic in Figure 3.2 - is determined
instead.

The storage requirement of an input specification is obviously the peak of
the (continuous) trace. When the memory trace cannot be determined exactly,
the approximating bounding area can provide the lower- and upper- bounds of
the trace peak. This range of the memory requirement represents the result of
our estimation approach.

The MemoRex algorithm (Figure 3.3) has five steps. Employing the ter-
minology introduced in [vSFCM93], the first step computes the number of
array elements produced by each definition domain and consumed by each
operand domain. The definition/operand domains are the array references in
the left/right hand side of the assignments. A definition produces the array
elements (the array elements are created), while the last read to an array ele-



Early Memory Size Estimation 21

ment consumes the array element (the element is no longer needed, and can be
potentially discarded).
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Step 2 determines the occupied memory size at the boundaries between the
loop nests (such as the boundary between the for loop nest and the forall loop
in the code from Figure 3.2). In fact, Step 2 determines a set of points on the
memory trace. To determine or approximate the unknown parts of the trace,
Step 3 determines a set of covering bounding rectangles, represented as shaded
rectangles in Figure 3.2. This is the output of the Memory Behavior Analysis
part of our algorithm. Based on the memory behavior, Step 4 approximates the
trace peak, determining the range for the memory requirement.

Step 5 refines the bounding area of the memory trace by breaking up the
larger rectangles into smaller ones. The resulting bounding area approximates
more accurately the shape of the memory trace, and the resulting range for the
memory requirement will get narrower.

Each step of the MemoRex algorithm in Figure 3.3 is presented in the fol-
lowing; we employ for illustration the simple code in Figure 3.4 to present in
detail the algorithm.

3.3.1 Data-dependence analysis
By studying the dependence relations between the array references in the

code, this step determines the number of array elements produced (created) or
consumed (killed) during each assignment.

The number of array elements produced by an assignment is given by the
size of the corresponding definition domains. In the illustrative example, the
number of array elements produced in the three loops are Card{a[I], 1 <=
I <= 10} = 10, Card{b[I], 1 <= I <= 10} = 10, and Card{c[I], 1 < =
I <= 5} = 5, respectively. In general though, the size of signal domains is
more difficult to compute, for instance, when handling array references within
the scope of loop nests and conditions: our approach employs the algorithm
which determines the size of linearly bounded lattices, described in [BCM95].

On the other hand, the number of array elements consumed by an operand
domain, is not always equal to the size of the operand domain, as some of the
array elements may belong also to other operands from subsequent assignments.
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For instance, only two array elements are consumed by the operand domain a[I]
(i.e., a[7], a[9]) and three other array elements (a[1], a[3], a[5]) by the operand
domain a[11-I], as the other a array elements of even index are read also by the
operand a[2*I] in the third loop.

In general, the computation of “killed” signals is more complicated when
dealing with loop nests and conditions. We perform the computation employing
a symbolic time function for each assignment, which characterizes (in a closed
form formula) when each array element is read, thus allowing us to find the last
read of each array element, i.e., the domain consuming that element.

3.3.2 Computing the memory size between loop nests

For each nest of loops, the total number of memory locations produced/consumed
is the sum of the locations produced/ consumed in each domain within that loop
nest. The memory size after executing a loop nest is the sum of the memory size
at the beginning of the loop nest, and the number of array elements produced
minus the number of array elements consumed within the loop nest:

As shown in Figure 3.5 a, the memory size for our example is 0 at the
beginning of the first loop, 10 after the execution of the first loop (because this
loop produces 10 array elements and does not consume any), and 15 at the end
of the second loop, as 10 new array elements are produced (b[1..10]), while the
five odd-index array elements of a are no longer necessary.

3.3.3 Determining the bounding rectangles

Based on the information already acquired in Steps 1 and 2, our algorithm
constructs bounding rectangles for each loop nest in the specification. These
rectangles are built such that they cover the memory trace (see Figure 3.5 b).
Thus, they characterize the behavior of the memory size for the portion of code
under analysis.

We illustrate the construction of the bounding rectangles for the second loop
in Figure 3.4. It is known from Step 1 that 10 array elements (b[1..10]) are
produced, while the operand domain a[I] consumes 2 array elements, and the
operand domain a[11-I] consumes 3. Since at most 7 out of the 10 assign-
ments may not consume any values (the other 3 will consume at least 1 value),
the maximum storage variation occurs, if the first 7 assignments generate one
new value each, without consuming any, and all the consumptions occur later.
Knowing from Step 2 that the memory size is 10 at the beginning of loop 2,
it follows that the upper-bound of the memory size for this loop is 10+7=17
locations. With similar reasoning, one can conclude that during the execution
of this loop, the memory trace could not go below 8 locations (see Figure 3.5
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c). Thus, the bounding rectangle for this loop has the upper edge 17, and lower
edge 8.

3.3.4 Determining the memory size range
The memory requirement for a specification is the peak of the memory trace.

Since the peak of the trace is contained within the bounding rectangles (along
with the whole memory trace), the highest point among all the bounding rectan-
gles represents an upper-bound of the memory requirement. For our illustrative
example, the memory requirement will not exceed 17 - the highest upper-edge
of the bounding rectangles (see Figure 3.5 c).

Since the memory size at the boundaries between the loop nests is known, the
memory requirement will be at least the maximum of these values. The maxi-
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mum memory size at the boundary points thus represents the lower-bound of the
memory requirement. For our illustrative example, the memory requirement is
higher than 15 (the lower dotted line in Figure 3.5c), which is the maximum
of the values at the boundaries of the three loops (Figure 3.5a). Therefore, the
actual memory requirement will be in the range [15..17]. This memory require-
ment range represents the result of the first pass of the algorithm. The last step
of our algorithm decides whether a more accurate approximation is necessary,
in such case initiating an additional pass.

3.3.5 Improving the estimation accuracy
If the current estimation accuracy is not satisfactory, for each loop nest whose

rectangle may contain the memory trace peak (the upper_edge higher than the
previous memory lower-bound), a split of the iteration space is performed (by
gradually splitting the range of the iterators, thus fissioning the loop nest).
The critical rectangles corresponding to these loop nests will be replaced in a
subsequent pass of the estimation algorithm by two new rectangles covering a
smaller area (Figure 3.6 a) and, therefore, following more accurately the actual
memory trace, thus yielding a more accurate memory behavior analysis, and a
more exact estimation. This process is iteratively repeated until a convenient
estimation accuracy is reached. Figure 3.6 a shows the refined bounding area,
and Figure 3.6 b presents the actual memory trace for our example.

3.4 Discussion on Parallelism vs. Memory Size
In the following we present a more complex example (Figure 3.7), which

shows the utility of the estimation tool. This code contains a forall loop and
multiple instructions executed in parallel (using cobegin-coend), assuming un-
limited processing resources. We consider the behavior of this code in two
cases: (I) Assuming that all “forall” loops are executed sequentially, and (II)
Assuming a parallel execution model.

(I) Assuming the forall loop executes sequentially, we obtain the behavior
in Figure 3.8, and after the second pass we determine that the memory size is
between [396..398].

(II) By allowing the forall loop to be executed in parallel, the memory be-
havior becomes the one depicted in Figure 3.9, and the memory size is 300.
Thus, the memory size for the parallel version of the code is 25% less than for
the sequential case.

Having the parallel version require 25% less memory than the sequential one
is a surprising result, since common sense would suggest that more parallelism
in the code would need more memory. We have done some preliminary experi-
ments in this direction, and they all seem to imply that more parallelism does not
necessarily mean more memory. Moreover, we could not find (or produce) any
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example where the most parallel version of the code needs more memory than
the sequential versions. For most of the examples, the most parallel version had
the same memory requirement as the “best” of the sequential ones. A possible
explanation could be the fact that when instructions are executed in parallel,
values are produced early, but also consumed early, and early consumption
leads to low memory requirement.

3.5 Experiments

To estimate the effectiveness of our approach, we compared our algorithm
against a memory estimation tool based on symbolic execution, which assigns
the signals to memory on a scalar basis to maximize sharing [GBD98]. We
ran both algorithms on a SPARCstation 5, on 7 application kernels: image
compression algorithm (Compress), linear recurrence solver (Linear), image
edge enhancement (Laplace), successive over-relaxation algorithm [PTVF92]
(SOR), two filters (Wavelett, Low-pass), and red-black Gauss-Seidel method
[PTVF92]. These examples are typical in image and video processing. Some of
them (e.g., SOR, Wavelett, G-S) exhibit complex affine indices and conditionals.

The results of our tests are displayed in Table 3.1. Columns 2 and 3 show
the memory requirement and the computation time obtained with the symbolic
execution method. This memory size represents the optimal in terms of loca-
tions sharing. Column 4 represents the memory size estimate obtained with
our algorithm (note that this is a lower-bound for the optimal value). For all
the examples, the memory prediction is very close to the optimal value from
column 2. The upper bound from Column 5 is used mainly as a measure of
the confidence in the prediction. If this value is closer to the lower-bound esti-
mate, the prediction is more accurate. Column 6 represents the percentile range:

The lower this value, the more confidence we can have in the estimation. For
most applications, high confidence is obtained within very reasonable time. A
0 percentile range means that the lower-bound is equal to the upper-bound, pro-
ducing the exact value. When there is some slack between the two, the optimal
value is usually very close to the lower-bound (the memory estimate), but in
worst case, depending on the memory behavior complexity, it can be anywhere
within that range.

For the Wavelett example, even though we obtained a very good estimate
(48002 vs. 48003) from the first pass, we needed 3 passes to reduce the per-
centile range and increase the confidence in the estimation, due to the complexity
of the memory behavior (the memory trace inside the loops is very irregular).
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3.6 Related Work
One of the earliest approaches to estimation of scalar memory elements is the

left edge algorithm [KP87], which assigns the scalar variables to registers. This
approach is not suited for multidimensional signal processing applications, due
to the prohibitive computational effort.

One of the earliest approaches of handling arrays of signals is based on clus-
tering the arrays into memory modules such that a cost function is minimized
[RGC94]. The possibility of signals with disjoint life times to share common
storage locations is however ignored, the resulting memory requirements of-
ten significantly exceeding the actual storage needed. More recently, [ST97]
proposed a more refined array clustering, along with a technique for binding
groups of arrays to memory modules drawn from a given library. However, the
technique does not perform in-place mapping within an array.

Approaches which deal with large multidimensional arrays operate on non-
procedural [BCM95] and stream models [LMVvdW93]. Non-procedural spec-
ifications do not have enough information to estimate accurately the memory
size, since by changing the instruction sequence, large memory variations are
produced. For example, assuming the code in Figure 3.10 (a) is non-procedural,
the memory size could vary between 100 and 150 locations, as in Figure 3.10
(b). [VSR94] uses a data-flow oriented view, as [BCM95], but has good results
for simpler specifications (constant loop bounds, simpler indices). [vSFCM93]
modified the loop hierarchy and the execution sequence of the source code, by
placing polyhedrons of signals derived from the operands in a common space
and determining an ordering vector in that space. None of the above techniques
addresses specifications containing explicit parallelism.

Zhao et al. [ZM99] present an approach for memory size estimation for
array computations based on live variable analysis, and integer point counting
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for parametrized polytopes. They show that it is enough to compute the number
of live variables for only one instruction in each innermost loop to determine
the minimum memory requirement. However, the live variable analysis is
performed for each iteration of the loops, making it computationally intensive
for large, multi-dimensional arrays.

Other memory management approaches use the access frequencies to balance
the port usage [PS97], and to optimize the partitioning between on-chip scratch-
pad and cache-accessed memories [PDN97]. However, they do not consider
the memory size.

3.7 Summary
In this chapter, we presented a technique for estimating the memory size for

multidimensional signal processing applications, as part of our design space
exploration environment. Different from previous approaches, we have ad-
dressed this problem considering that the algorithmic specifications written in
a procedural style may also contain explicit parallel constructs. Even if the
initial input does not contain explicit parallelism, partitioning and design space
exploration may introduce explicit parallelism in an attempt to achieve higher
performance.

Our experiments on typical video and image processing kernels show close
to optimal results with very reasonable time. The experimental results obtained
by our approach have been compared to a brute-force exact computation of the
memory size, implemented using symbolic simulation.
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EARLY MEMORY AND CONNECTIVITY
ARCHITECTURE EXPLORATION

Traditionally, designers have attempted to improve memory behavior by ex-
ploring different cache configurations, with limited use of more special purpose
memory modules such as stream buffers [Jou90]. However, while real-life ap-
plications contain a large number of memory references to a diverse set of data
structures, a significant percentage of all memory accesses in the application are
generated from a few instructions in the code. For instance, in Vocoder, a GSM
voice coding application with 15K lines of code, 62% of all memory accesses
are generated by only 15 instructions. Furthermore, these instructions often
exhibit well-known, predictable access patterns. This presents a tremendous
opportunity to customize the memory architecture to match the needs of the
predominant access patterns in the application, and significantly improve the
memory system behavior. Moreover, the cost, bandwidth and power footprint
of the memory system is influenced not only by the memory modules employed,
but also by the connectivity used to transfer the data between the memory mod-
ules and the CPU. While the configuration and characteristics of the memory
modules are important, often the connectivity structure has a comparably large
impact on the system performance, cost and power; thus it is critical to consider
it early in the design flow. In this chapter we present an approach that cou-
ples the memory architecture exploration step (which extracts, analyzes, and
clusters the most active memory access patterns in the application), with the
connectivity exploration step (which evaluates a wide range of connectivity con-
figurations using components from a connectivity IP library, such as standard
on-chip busses, MUX-based connections, and off-chip busses). This coupled
approach improves the performance of the system, for varying cost, and power
consumption, allowing the designer to best tradeoff the different goals of the

Chapter 4

4.1 Motivation



4.2 Access Pattern Based Memory Architecture
Exploration

Memory access patterns have long been analyzed in order to improve system
performance. For instance, in the context of disk file systems [PUSS,
there have been many approaches to employ the file access pattern to customize
the file system to best match the access characteristics of the application. Like-
wise, many approaches have proposed customizing the processor through spe-
cial purpose instructions and special functional units to target the predominant
computations in embedded applications (such as MAC, FFT, etc.). However,
none of the previous approaches has attempted to analyze the memory access
patterns information in the application, with the goal of aggressively customiz-
ing the memory architecture. We use the access patterns to customize the
memory architecture, employing modules from a memory IP library, to explore
a wide range of cost, performance, and power designs. We use a heuristic to
prune the design space of such memory customizations, and guide the search
towards the designs with best cost/gain ratios, exploring a space well beyond
the one traditionally considered.

In Section 4.2.1 we present the flow of our approach. In Section 4.2.2 we
use a large real-life example to illustrate our approach and in Section 4.2.3 we
present an outline of our Access Pattern based Memory Exploration (APEX)
approach. In Section 4.2.4 we present a set of experiments that demonstrate
the customization of the memory architecture for a set of large multimedia and
scientific applications, and present exploration results showing the wide range
of performance, power and cost tradeoffs obtained. In Section 4.2.5 we present
the related work in the area of memory subsystem optimizations.

4.2.1 Our approach
Figure 4.1 presents the flow of our Access Pattern based Memory Explo-

ration (APEX) approach. We start by extracting the most active access patterns
from the input C application; we then analyze and cluster these access pat-
terns according to similarities and interference, and customize the memory
architecture by allocating a set of memory modules from a Memory Modules
IP Library. We explore the space of these memory customizations by using
a heuristic to guide the search towards the most promising cost/performance
memory architecture tradeoffs. We prune the design space by using a fast time-
sampling simulation to rule-out the non-interesting parts of the design space,

system. In Section 4.2 we present our Access Pattern based Memory Archi-
tecture Exploration approach, and in Section 4.3 we present our Connectivity
Exploration approach.
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and then fully simulate and determine accurate performance/power measures
only for the selected memory architectures. After narrowing down the search
to the most promising cost/performance designs, we allow the designer to best
match the performance/power requirements of the system, by providing full
cost/performance/power characteristics for the selected designs.

The basic idea is to target specifically the needs of the most active mem-
ory access patterns in the application, and customize a memory architecture,
exploring a wide range of designs, that exhibit varied cost, performance, and
power characteristics.

Figure 4.2 presents the memory architecture template. The memory access
requests from the processor are routed to one of the memory modules 0 through
n or to the cache, based on the address. The custom memory modules can read
the data directly from the DRAM, or alternatively can go through the cache
which is already present in the architecture, allowing access patterns which
exhibit locality to make use of the locality properties of the cache. The custom
memory modules implement different types of access patterns, such as stream
accesses, linked-list accesses, or a simple SRAM to store hard-to-predict or
random accesses. We use custom memory modules to target the most active
access patterns in the application, while the remaining, less frequent access
patterns are serviced by the on-chip cache.
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4.2.2 Illustrative example
We use the compress benchmark (from SPEC95) to illustrate the perfor-

mance, power and cost trade-offs generated by our approach. The benchmark
contains a varied set of access patterns, presenting interesting opportunities for
customizing the memory architecture. We start by profiling the application, to
determine the most active basic blocks and memory references. In the compress
benchmark, 40% of all memory accesses are generated by only 19 instructions.

By traversing the most active basic blocks, we extract the most active ac-
cess patterns from the application. Figure 4.3 shows an excerpt of code from
compress, containing references to 3 arrays: htab, codetab, and rmask. htab
is a hashing table represented as an array of 69001 unsigned longs (we assume
that both longs and ints are stored using 32 bits), codetab is an array of 69001
shorts, and rmask is an array of 9 characters. The sequence of accesses to
htab, codetab, and rmask represent access patterns ap1, ap2 and ap3 respec-
tively. The hashing table htab is traversed using the array codetab as an indirect
index, and the sequence of accesses to the array codetab is generated by a self-
indirection, by using the values read from the array itself as the next index. The
sequence in which the array rmask is traversed is difficult to predict, due to a
complex index expression computed across multiple functions. Therefore we
consider the order of accesses as unknown. However, rmask represents a small
table of coefficients, accessed very often.

Compress contains many other memory references exhibiting different types
of access patters such as streams with positive or negative stride. We extract
the most active access patterns in the application, and cluster them according
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to similarity and interference. Since all the access patterns in a cluster will be
treated together, we group together the access patterns which are compatible
(for instance access patterns which are similar and do not interfere) in the hope
that all the access patterns in a cluster can be mapped to one custom memory
module.

Next, for each such access pattern cluster we allocate a custom memory
module from the memory modules library. We use a library of parameterizable
memory modules containing both generic structures such as caches and on-chip
SRAMs, as well as a set of parameterizable custom memory modules developed
for specific types of access patterns such as streams with positive, negative, or
non-unit strides, indirect accesses, self-indirect accesses, linked-list accesses.
The custom memory modules are based on approaches proposed in the general
purpose computing domain [cC94, Jou90, RMS98], with the modification that
the dynamic prediction mechanisms are replaced with the static compile-time
analysis of the access patterns, and the prefetched data is stored in special
purpose FIFOs.

We briefly describe one such example for illustration: for the sample access
pattern ap2 from compress, we use a custom memory module implementing
self-indirect access pattern, while for the access pattern ap3, due to the small
size of the array rmask, we use a small on-chip SRAM [PDN99]. Figure 4.4
presents an outline of the self-indirect custom memory module architecture
used for the access pattern ap2, where the value read from the array is used
as the index for the next access to the array. The base register stores the base
address of the array, the index register stores the previous value which will be
used as an index in the next access, and the small FIFO stores the stream of
values read from the next memory level, along with the address tag used for
write coherency. When the CPU sends a read request, the data is provided
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from the FIFO. The empty spot in the FIFO initiates a fetch from the next level
memory to bring in the next data element. The adder computes the address for
the next data element based on the base address and the previous data value.
We assume that the base register is initialized to the base of the codetab array
and the index register to the initial index through a memory mapped control
register model (a store to the address corresponding to the base register writes
the base address value into the register).

The custom memory modules from the library can be combined together,
based on the relationships between the access patterns. For instance, the access
pattern ap1 uses the access pattern ap2 as an index for the references. In
such a case we use the self-indirection memory module implementing ap2 in
conjunction with a simple indirection memory module, which computes the
sequence of addresses by adding the base address of the array htab with the
values produced by ap2, and generate ap1=htab[ap2].

After selecting a set of custom memory modules from the library, we map
the access pattern clusters to memory modules. Starting from the traditional
memory architecture, containing a small cache, we incrementally customize
access pattern clusters, to significantly improve the memory behavior. Many
such memory module allocations and mappings are possible. Exploring the full
space of such designs would be prohibitively expensive. In order to provide
the designer with a spectrum of such design points without the time penalty
of investigating the full space, we use a heuristic to select the most promising
memory architectures, providing the best cost/performance/power tradeoffs.

For the compress benchmark we explore the design space choosing a set of 5
memory architectures which provide advantageous cost/performance tradeoffs.
The overall miss rate of the memory system is reduced by 39%, generating a
significant performance improvement for varied cost and power characteristics



4.2.3 The Access Pattern based Memory Exploration
(APEX) Approach

Our Access Pattern based Memory Exploration (APEX) approach is a heuris-
tic method to extract, analyze, and cluster the most active access patterns in the
application, and customize the memory architecture, explore the design space
to tradeoff the different goals of the system. It contains two phases: (I) Access
pattern clustering and (II) Exploration of custom memory configurations.

4.2.3.1 Access Pattern Clustering

In the first phase of our approach, we extract the access patterns from the
application, analyze and group them into access pattern clusters, according to
their relationships, similarities and interferences. Figure 4.5 presents an outline
of the access pattern extraction and clustering algorithm. The access pattern
clustering algorithm contains 4 steps.

(1) We extract the most active access patterns from the input application.
We consider three types of access patterns: (a) Access patterns which can
be determined automatically by analyzing the application code, (b) Access
patterns about which the user has prior knowledge, and (c) Access patterns that
are difficult to determine, or are input-dependent.

(a) Often access patterns can be determined at compile time, using tradi-
tional compiler analysis. Especially in DSP and embedded systems, the access
patterns tend to be more regular, and predictable at compile time (e.g., in video,
image and voice compression).

First, we use profiling to determine the most active basic blocks in the ap-
plication. For each memory reference in these basic blocks we traverse the
use-def chains to construct the address expression, until we reach statically
known variables, constants, loop indexes, or other access patterns. This closed
form formula represents the access pattern of the memory reference. If all the
elements in this expression are statically predictable, and the loop indexes have
known bounds, the access pattern represented by this formula is predictable.

(b) In the case of well-known data structures (e.g., hashing tables, linked
lists, etc.), or well-understood high-level concepts (such as the traversal algo-
rithms in well-known DSP functions), the programmer has prior knowledge
on the data structures and the access patterns. By providing this information
in the form of assertions, he can give hints on the predominant accesses in
the application. Especially when the memory references depend on variables

(we present the details of the exploration in Chapter 6). In this manner we
can customize the memory architecture by extracting and analyzing the access
patterns in the application, thus substantially improving the memory system
behavior, and allowing the designer to trade off the different goals of the system.
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which traverse multiple functions, indirections, and aliasing, and determining
the access pattern automatically is difficult, allowing the user to input such
readily available information, significantly improves the memory architecture
customization opportunities.

(c) In the case of memory references that are complex and difficult to predict,
or depend on input data, we treat them as random access patterns. While for
such references it is often impossible to fully understand the access pattern, it
may be useful to use generic memory modules such as caches or on-chip scratch
pad memories, to exploit the locality trends exhibited.

(2) In the second step of the Access Pattern Clustering algorithm we build
the Access Pattern Graph (APG), containing as vertices the most active access
patterns from the application. The arcs in the APG represent properties such
as similarity, interference, whether two access patterns refer to the same data
structure, or whether an access pattern uses another access pattern as an index
for indirect addressing, or pointer computation.

(3) Based on the APG, we build the Access Pattern Compatibility Graph
(APCG), which has the same vertices as the APG (the access patterns), but
the arcs represent compatibility between access patterns. We say two access
patterns are compatible, if they can belong to the same access pattern cluster. For
instance, access patterns that are similar (e.g., both have stream-like behavior),
but which have little interference (are accessed in different loops) may share
the same custom memory module, and it makes sense to place them in the same
cluster. The meaning of the access pattern clusters is that all the access patterns
in a cluster will be allocated to one memory module.

(4) In the last step of the Access Pattern Clustering algorithm, we find the
cliques of fully connected subgraphs in the APCG compatibility graph. Each
such clique represents an access pattern cluster, where all the access patterns
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4.2.3.2 Exploring Custom Memory Configurations

In the second phase of the APEX approach, we explore the custom memory
module implementations and access pattern cluster mappings, using a heuristic
to find the most promising design points.

Figure 4.13 presents an outline of our exploration heuristic. We first initialize
the memory architecture to contain a small traditional cache, representing the
starting point of our exploration.

For each design point, the number of alternative customizations available
is large, and fully exploring them is prohibitively expensive. For instance,
each access pattern cluster can be mapped to custom memory modules from
the library, or to the traditional cache, each such configuration generating a
different cost/ performance/power tradeoff. In order to prune the design space,
at each exploration step we first estimate the incremental cost and gain obtained
by the further possible customization alternatives, then choose the alternative
leading to the best cost/gain ratio for further exploration. Once a customization
alternative has been chosen, we consider it the current architecture, and perform
full simulation for the new design point. We then continue the exploration, by
evaluating the further possible customization opportunities, starting from this
new design point.

We tuned our exploration heuristic to prune out the design points with poor
cost/ performance characteristics, guiding the search towards points on the
lower bound of the cost/performance design space.

For performance estimation purposes we use a time-sampling technique (de-
scribed in Section 4.3.4), which significantly speeds the simulation process.
While this may not be highly accurate compared to full simulation, the fidelity
is sufficient to make good incremental decisions guiding the search through
the design space. To verify that our heuristic guides the search towards the
pareto curve of the design space, we compare the exploration results with a
full simulation of all the allocation and access pattern mapping alternatives for
a large example. Indeed, as shown in Chapter 6, our algorithm finds the best
cost/performance points in the design space, without requiring full simulation
of the design space.

Early Memory and Connectivity Architecture Exploration 39

are compatible, according to the compatibility criteria determined from the
previous step (a complete description of the compatibility criteria is presented
in [GDN01c]). Each such access pattern cluster will be mapped in the following
phase to a memory module from the library.

4.2.4 Experiments
We performed a set of experiments on a number of large multimedia and

scientific applications to show the performance, cost and power tradeoffs gen-
erated by our approach.



MEMORY ARCHITECTURE EXPLORATION

4.2.4.1 Experimental Setup

We simulated the design alternatives using our simulator based on the SIM-
PRESS [MGDN01] memory model, and SHADE [CK93]. We assumed a pro-
cessor based on the SUN SPARC 1, and we compiled the applications using
gcc. We estimated the cost of the memory architectures (we assume the cost in
equivalent basic gates) using figures generated by the Synopsys Design Com-
piler [Syn], and an SRAM cost estimation technique from

We computed the average memory power consumption of each design point,
using cache power figures from CACTI [WJ96]. For the main memory power
consumption there is a lot of variation between the figures considered by differ-
ent researchers depending on the main memory
type, technology, and bus architecture. The ratio between the energy consumed
by on-chip cache accesses and off-chip DRAM accesses varies between one and

1 The choice of SPARC was based on the availability of SHADE and a profiling engine; however our approach
is clearly applicable to any other (embedded) processor as well
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two orders of magnitude [HWO97]. In order to keep our technique independent
of such technology figures, we allow the designer to input the ratio R as:

where E_cache_access is the energy for one cache access, and E_main_memory_
access is the energy to bring in a full cache line. In our following power com-
putations we assume a ratio R of 50, relative to the power consumption of an
8k 2-way set associative cache with line size of 16 bytes.

The use of multiple memory modules in parallel to service memory access
requests from the CPU requires using multiplexers to route the data from these
multiple sources. These multiplexers may increase the access time of the mem-
ory system, and if this is on the critical path of the clock cycle, it may lead
to the increase of the clock cycle. We use access times from CACTI [WJ96]
to compute the access time increases, and verify that the clock cycle is not
affected.

Different cache configurations can be coupled with the memory modules
explored, probing different areas of the design space. We present here our
technique starting from an instance of such a cache configuration. A more
detailed study for different cache configurations can be found in [GDN01c],

4.2.4.2 Results

Figure 4.7 presents the memory design space exploration of the access pattern
customizations for the compress application. The compress benchmark exhibits
a large variety of access patterns providing many customization opportunities.
The x axis represents the cost (in number of basic gates), and the y axis represents
the overall miss ratio (the miss ratio of the custom memory modules represents
the number of accesses where the data is not ready when it is needed by the
CPU, divided by the total number of accesses to that module).

The design points marked with a circle represent the memory architectures
chosen during the exploration as promising alternatives, and fully simulated for
accurate results. The design points marked only with an X represent the explo-
ration attempts evaluated through fast time-sampling simulation, from which
the best cost/gain tradeoff is chosen at each exploration step. For each such de-
sign we perform full simulation to determine accurate cost/performance/power
figures.

The design point labeled 1 represents the initial memory architecture, con-
taining an 8k 2-way associative cache. Our exploration algorithm evaluates the
first set of customization alternatives, by trying to choose the best access pattern
cluster to map to a custom memory module. The best performance gain for the
incremental cost is generated by customizing the access pattern cluster contain-
ing a reference to the hashing table htab, which uses as an index in the array the
access pattern reading the codetab array (the access pattern is htab[codetab[i]]).
This new architecture is selected as the next design point in the exploration, la-
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beled 2. After fully simulating the new memory architecture, we continue the
exploration by evaluating the further possible customization opportunities, and
selecting the best cost/performance ratio. In this way, we explore the mem-
ory architectures with most promising cost/performance tradeoffs, towards the
lower bound of the design space.

The miss ratio of the compress application varies between 13.42% for the
initial cache-only architecture (for a cost of 319,634 gates), and 8.10% for a
memory architecture where 3 access pattern clusters have been mapped to cus-
tom memory modules (for a cost of 334,864 gates). Based on a cost constraint
(or alternatively on a performance requirement), the designer can choose the
memory architecture which best matches the goals of the system.

In order to validate our space walking heuristic, and confirm that the cho-
sen design points follow the pareto-curve-like trajectory in the design space,
we compared the design points generated by our approach to pareto points
generated by full simulation of the design space considering all the memory
module allocations and access pattern cluster mappings for the compress ex-
ample benchmark. Figure 4.8 shows the design space in terms of the estimated
memory design cost (in number of basic gates), and the overall miss rate of
the application. A design is on the pareto curve if there is no other design
which is better in both cost and performance. The design points marked with



an X represent the points explored by our heuristic. The points marked by a
black dot, represent a full simulation of all allocation and mapping alternatives.
The points on the lower bound of the design space are the most promising, ex-
hibiting the best cost/performance tradeoffs. Our algorithm guides the search
towards these design points, pruning the non-interesting points in the design
space. Our exploration heuristic successfully finds the most promising designs,
without fully simulating the whole design space: each fully simulated design
on the lower bound (marked by a black dot) is covered by an explored design
(marked by an X) 2. This provides the designer the opportunity to choose the
best cost/performance trade-off, without the expense of investigating the whole
space.

Table 4.1 presents the performance, cost and power results for a set of large,
real-life benchmarks from the multimedia and scientific domains. The first
column shows the application, and the second column represents the memory
architectures explored for each such benchmark. The third column represents
the cost of the memory architecture (in number of basic gates), the fourth column
represents the miss ratio for each such design point, the fifth column shows the

2Not all exploration points (X) are covered by a full simulation point (black dot), since some of the exploration
points represent estimations only
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average memory latency (in cycles), and the last column presents the average
memory power consumption, normalized to the initial cache-only architecture
(represented by the first design point for each benchmark).

In Table 4.1 we present only the memory architectures with best cost/ per-
formance characteristics, chosen during the exploration. The miss ratio shown
in the fourth column represents the number of memory accesses when the data
is not yet available in the cache or the custom memory modules when required
by the CPU. The average memory latency shown in fifth column represents the
average number of cycles the CPU has to wait for an access to the memory
system. Due to the increased hit ratio, and to the fact that the custom memory
modules require less latency to access the small FIFO containing the data than
the latency required by the large cache tag, data array and cache control, the
average memory latency varies significantly during the exploration.

By customizing the memory architecture based on the access patterns in the
application, the memory system performance is significantly improved. For
instance, for the compress benchmark, the miss ratio is decreased from 13.4%
to 8.10%, representing a 39% miss ratio reduction for a relatively small cost
increase. The power increase shown in the last column seems substantial.
However it is mainly due to the increase in performance: a similar amount of
energy consumed in less amount of time generates a higher power consumption.
However, the energy variations are small. Moreover, by exploring a varied set
of design points, the designer can tradeoff the cost, power and performance of
the system, to best meet the design goals.

Vocoder is a multimedia benchmark exhibiting mainly stream-like regular
access patterns, which behave well with small cache sizes. Since the initial
cache of 1k has a small cost of 40,295 gates, there was enough space to double
the cache size. The design points 1 through 4 represent the memory architectures
containing the 1k cache, while the design points 5 through 8 represent the
memory architectures containing the 2k cache. As expected, the performance
increases significantly when increasing the cost of the memory architecture.
However, a surprising result is that the power consumption of the memory
system decreases when using the larger cache: even though the power consumed
by the larger cache accesses increases, the main memory bandwidth decrease
due to a lower miss ratio results in a significantly lower main memory power,
which translates into a lower memory system power. Clearly, these types of
results are difficult to determine by analysis alone, and require a systematic
exploration approach to allow the designer to best trade off the different goals
of the system.

The wide range of cost, performance, and power tradeoffs obtained are due to
the aggressive use of the memory access pattern information, and customization
of the memory architecture beyond the traditional cache architecture.
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4.2.5 Related Work
As outlined earlier in Section 2, there has been related work in four main do-

mains: (I) High-level synthesis, (II) Computer Architecture, (III) Programmable
embedded systems, and (IV) Disk file systems and databases.

(I) In the domain of High-Level Synthesis, custom synthesis of the memory
architecture has been addressed for design of embedded ASICs. Catthoor et al.

address memory allocation, packing the data structures according
to their size and bitwidth into memory modules from a library, to minimize the
memory cost, and optimize port sharing. Wuytack et al. present an
approach to manage the memory bandwidth by increasing memory port utiliza-
tion, through memory mapping and code reordering optimizations. Bakshi et al.
[BG95] present a memory exploration approach, combining memory modules
using different connectivity and port configurations for pipelined DSP systems.
We complement this work by extracting and analyzing the prevailing accesses
in the application in terms of access patterns, their relationships, similarities and
interferences, and customize the memory architecture using memory modules
from a library to generate a wide range of cost/performance/power tradeoffs in
the context of programmable embedded systems.

(II) In the domain of Computer Architecture, [Jou90], [PK94] propose the
use of hardware stream buffers to enhance the memory system performance.



Reconfigurable cache architectures have been proposed recently                    to
improve the cache behavior for general purpose processors, targeting a large set
of applications. However, the extra control needed for adaptability and dynamic
prediction of the access patterns while acceptable in general purpose computing
where performance is the main target may result in a power overhead which is
prohibitive in embedded systems, that are typically power constrained. Instead
of using such dynamic prediction mechanisms, we statically target the local
memory architecture to the data access patterns.

On a related front, Hummel et al. [HHN94] address the problem of mem-
ory disambiguation in the presence of dynamic data structures to improve the
parallelization opportunities. Instead of using this information for memory
disambiguation, we use a similar type of closed form description generated
by standard compiler analysis to represent the access patterns, and guide the
memory architecture customization.

(III) In the domain of programmable embedded systems, Kulkarni et al.
[Kul01], Panda et al. [PDN99] have addressed customization of the memory
architecture targeting different cache configurations, or alternatively using on-
chip scratch pad SRAMs to store data with poor cache behavior. [GDN01a]
presents an approach that customizes the cache architecture to match the locality
needs of the access patterns in the application. However, this work only targets
the cache architecture, and does not attempt to use custom memory modules to
target the different access patterns.

(IV) In the domain of file systems and databases, there have been several
approaches to use the file access patterns to improve the file system behavior.
Parsons et al. [PUSS] present an approach allowing the application program-
mer to specify the file I/O parallel behavior using a set of templates which can
be composed to form more complex access patterns. Patterson et al.
advocate the use of hints describing the access pattern (currently supporting se-
quential accesses and an explicit list of accesses) to select particular prefetching
and caching policies in the file system.

The work we present differs significantly from all the related work in that we
aggressively analyze, cluster and map memory access patterns to customized
memory architectures; this allows the designer to trade-off performance and
power against cost of the memory system.
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4.3 Connectivity Architecture Exploration
In Section 4.2 we presented the exploration of the memory modules, based

on the access patterns exhibited by the application, assuming a simple connec-
tivity model. In this section we extend this work by performing connectivity
exploration in conjunction with the memory modules exploration, to improve
the behavior of the memory-connectivity system. There are two possible ap-
proaches to improving the memory system behavior: (a) a synthesis-oriented,



optimization approach, where the result is a unique “best” solution, and (b) an
exploration-based approach, where different memory system architectures are
evaluated, and the most promising designs following a pareto-like shape are pro-
vided as the result, allowing the designer to further refine the choice, according
to the goals of the system. We follow the second approach: we guide the design
space search towards the pareto points in different design spaces (such as the
cost/performance, and performance/power spaces), pruning the non-interesting
designs early in the exploration process, and avoiding full simulation of the
design space.

In Section 4.3.1 we present the flow of our approach. In Section 4.3.2 we use
an example application to illustrate our exploration strategy, and in Section 4.3.3
we show the details of our Connectivity Exploration (ConEx) algorithm. We
then present a set of experiments showing the cost, performance and power
tradeoffs obtained by our coupled memory and connectivity exploration. In
Section 4.3.5 we present related work in the area of connectivity and memory
architecture exploration.

4.3.1 Our approach
Figure 4.9 shows the flow of our approach. The Connectivity Exploration

(ConEx) approach is part of the MemorEx Memory System Exploration envi-
ronment. Starting from the input application in C, our Access Pattern-based
Memory Exploration (APEX) [GDN01b] algorithm first extracts the most ac-
tive access patterns exhibited by the application data structures, and explores
the memory module configurations to match the needs of these access patterns;
however, it assumes a simple connectivity model. Our ConEx Connectivity
Exploration approach starts from this set of selected memory modules con-
figurations generated by APEX, and explores the most promising connectiv-
ity architectures, which best match the performance, cost and power goals of
the system. Since the complete design space is very large, and evaluating all
possible combinations in general is intractable, at each stage we prune out the
non-interesting design configurations, and consider for further exploration only
the points which follow a pareto-like curve shape in the design space.

In order to test that our exploration strategy successfully follows the pareto-
like curve shape, we compare our pruning with a full space simulation for two
large applications.

Starting from a memory architecture containing a set of memory modules, we
map the communication channels between these modules, the off-chip memory
and the CPU to connectivity modules from a connectivity IP library. Figure 4.10
(a) shows the connectivity architecture template for an example memory archi-
tecture, containing a cache, a stream buffer, an on-chip SRAM, and an off-chip
DRAM. The communication channels between the on-chip memory modules,
the off-chip memory modules and the CPU can be implemented in many ways.
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One naive implementation is where each communication channel is mapped
to one connectivity module from the library. However, while this solution
may generate good performance, in general the cost is prohibitive. Instead,
we cluster the communication channels into groups based on their bandwidth
requirement, and map each such cluster to connectivity modules. Figure 4.10
(b) shows an example connectivity architecture implementing the communica-
tion channels, containing two on-chip busses, a dedicated connection, and an
off-chip bus.

4.3.2 Illustrative example
We use the compress benchmark (SPEC95) to illustrate the cost, perfor-

mance, and power trade-offs generated by our connectivity exploration ap-
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proach. The benchmark contains a varied set of data structures and access
patterns, presenting interesting opportunities for customizing the memory ar-
chitecture and connectivity.

First we perform Access Pattern based Memory Exploration (APEX) [GDN01b],
to determine a set of promising memory modules architectures. For each such



memory modules architecture, a set of different connectivity architectures are
possible, each resulting in different cost, performance and power characteris-
tics. Our Connectivity Exploration approach (ConEx) starts from the memory
modules architectures generated by APEX, and explores the connectivity con-
figurations, using components from a connectivity library (such as the AMBA
busses [ARM], MUX-based connections, etc.), trading off the cost, performance
and power for the full memory system, taking into account both the memory
modules and the connectivity structure.
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For the illustrative example benchmark compress, APEX selects the most
promising memory modules configurations. The resulting memory architec-
tures employ different combinations of modules such as caches, SRAMs, and
DMA-like custom memory modules storing well-behaved data such as linked
lists, arrays of pointers, streams, etc. [GDN01b]. Figure 4.11 shows the mem-
ory modules architectures explored by APEX for the compress example (this
figure is similar to Figure 4.7; we duplicate it for convenience, indicating also
the pruned design space). The X axis represents the cost of the memory modules
in basic gates, and the Y axis represents the overall miss ratio (we assume that
accesses to on-chip memory such as the cache or SRAM are hits, and accesses to
off-chip memory are misses). APEX prunes the non-interesting designs, on the
inside of the pareto curve, choosing only the most promising cost/performance



architectures for further exploration. The points labeled 1 through 5 represent
the selected memory modules designs, which will be used as the starting point
for the connectivity exploration.

Each such selected memory architecture may contain multiple memory mod-
ules with different characteristics, and communication requirements. For each
such architecture, different connectivity structures, with varied combinations of
connectivity modules from the library may be used. For instance, the memory
modules architecture labeled with 3 in Figure 4.11 contains a cache, a memory
module for stream accesses, a memory module for self-indirect array references
(as explained in Section 4.2) and an off-chip DRAM. When using dedicated or
MUX-based connections from the CPU to the memory modules, the latency of
the accesses is small, at the expense of longer connection wires. Alternatively,
when using a bus-based connection, such as the AMBA System bus (ASB)
[ARM], the wire length decreases, at the expense of increased latency due to
the more complex arbitration needed. Similarly, when using wider busses, with
pipelined or split transaction accesses, such as the AMBA High-performance
bus (AHB) [ARM], the wiring and bus controller area increases further. More-
over, all these considerations impact the energy footprint of the system. For
instance, longer connection wires generate larger capacitances, which may lead
to increased power consumption.

Figure 4.12 shows the ConEx connectivity exploration for the compress
benchmark. The X axis represents the cost of the memory and connectivity
system. The Y axis represents the average memory latency, including the la-
tency due to the memory modules, as well as the latency due to the connectivity.
The average memory latency is reduced from 10.6 cycles to 6.7 cycles, repre-
senting a 36% improvement3, while trading off the cost of the connectivity and
memory modules.

Alternatively, for energy-aware designs, similar tradeoffs are obtained in the
cost/power or the performance/power design spaces (the energy consumption
tradeoffs are presented in the Chapter 6). In this manner we can customize
the connectivity architecture, thus substantially improving the memory and
connectivity system behavior, and allowing the designer to trade off the different
goals of the system.

4.3.3 Connectivity Exploration Algorithm
Our Connectivity Exploration (ConEx) algorithm is a heuristic method to

evaluate a wide range of connectivity architectures, using components from a

3For clarity in the figures, we did not include the uninteresting designs exhibiting very bad performance
(many times worse than the best designs). While those designs would increase even further the performance
variation, in general they are not useful.
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connectivity IP library, and selecting the most promising architectures, which
best trade-off the connectivity cost, performance and power.

Figure 4.13 shows our Connectivity Exploration algorithm. The input to our
ConEx algorithm is the application in C, a set of selected memory modules
architectures (generated by the APEX exploration step in Section 4.2), and the
connectivity library. Our algorithm generates as output the set of most promis-
ing connectivity/memory modules architectures, in terms of cost, performance
and power.

For each memory modules architecture selected in the APEX memory mod-
ules exploration stage from Section 4.2, multiple connectivity implementations
are possible. Starting from these memory modules architectures, we explore
the connectivity configurations by taking into account the behavior of the com-
plete memory and connectivity system, allowing the designer to tradeoff the
cost, performance and power of the design. The ConEx algorithm proceeds in
two phases: (I) Evaluate connectivity configurations (II) Select most promising
designs.

(I) Evaluate connectivity configurations. For each memory architecture
selected from the previous APEX Memory Modules Exploration phase (Sec-
tion 4.2), we evaluate different connectivity architecture templates and con-



nectivity allocations using components from the connectivity IP library. We
estimate the cost, performance and power of each such connectivity architec-
ture, and perform an initial selection of the most promising design points for
further evaluation.

We start by profiling the bandwidth requirement between the memory mod-
ules and CPU for each memory modules architecture selected from APEX, and
constructing a Bandwidth Requirement Graph (BRG). The Bandwidth Require-
ment Graph (BRG) represents the bandwidth requirements of the application
for the given memory modules architecture. The nodes in the BRG represent
the memory and processing cores in the system (such as the caches, on-chip
SRAMs, DMAs, off-chip DRAMs, the CPU, etc.), and the arcs represent the
channels of communication between these modules. The BRG arcs are labeled
with the average bandwidth requirement between the two modules.

Each arc in the BRG has to be implemented by a connectivity component
from the connectivity library. One possible connectivity architecture is where
each arc in the BRG is assigned to a different component from the connectivity
library. However, this naive implementation may result in excessively high
cost, since it does not try to share the connectivity components. In order to
allow different communication channels to share the same connectivity module,
we hierarchically cluster the BRG arcs into logical connections, based on the
bandwidth requirement of each channel. We first group the channels with the
lowest bandwidth requirements into logical connections. We label each such
cluster with the cumulative bandwidth of the individual channels, and continue
the hierarchical clustering. For each such clustering level, we then explore all
feasible assignments of the clusters to connectivity components from the library,
and estimate the cost, performance, and power of the memory and connectivity
system.

(II) Select most promising designs. In the second phase of our algorithm, for
each memory and connectivity architecture selected from Phase I we perform
full simulation to determine accurate performance and power metrics. We
then select the best combined memory and connectivity candidates from the
simulated architectures.

While in Phase I we selected separately for each memory module architecture
the best connectivity configurations, in Phase II we combine the selected designs
and choose the best overall architectures, in terms of both the memory module
and connectivity configuration.

The different design points present different cost, performance and power
characteristics. In general, these three optimization goals are incompatible. For
instance, when optimizing for performance, the designer has to give up either
cost, or power. Typically, the pareto points in the cost/performance space have
a poor power behavior, while the pareto points in the performance/power space
will incur a large cost. We select the most promising architectures using three
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scenarios: (a) In a power-constrained scenario, where the energy consump-
tion has to be less then a threshold value, we determine the cost/performance
pareto points, to optimize for cost and performance, while keeping the power
less then the constraint, (b) In a cost-constrained scenario, we compute the per-
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formance/power pareto points, and (c) In a performance-constrained scenario,
we compute the pareto points in the cost-power space, optimizing for cost and
power, while keeping the performance within the requirements.

(a) In the power-constrained scenario, we first determine the pareto points
in the cost-performance space. Recall that a design is on the pareto curve if
there is no other design which is better in both cost and performance. We then
collect the energy consumption information for the selected designs. The points
on the cost-performance pareto curve may not be optimal from the the energy
consumption perspective. From the selected cost-performance pareto points
we choose only the ones which satisfy the energy consumption constraint. The
designer can then tradeoff the cost and performance of the system to best match
the design goals.

(b) In the cost-constrained scenario, we start by determining the pareto points
in the performance-power space, and use the system cost as a constraint. Con-
versely, the pareto points in the performance-power space are in general not
optimal from the cost perspective.

(c) When using the performance as a constraint, we determine the cost-power
pareto points.

For performance and power estimation purposes we use a time-sampling
technique [KHW91] (see Section 4.3.4 for a description of the time-sampling
technique), which significantly speeds the simulation process. While this may
not be highly accurate compared to full simulation, the fidelity is sufficient to
make good incremental decisions guiding the search through the design space.
To verify that our heuristic guides the search towards the pareto curve of the
design space, we compare the exploration results with a full simulation of all the
memory and connectivity mapping alternatives for two large examples. Indeed,
as shown in Chapter 6, our algorithm successfully finds the best points in the
design space, without requiring full simulation of the design space.

4.3.3.1 Cost, performance, and power models

We present in the following the cost, performance and power models used
during our memory modules and connectivity exploration approach.

The cost of the chip is composed of two parts: the cost of the cores (such as
CPU cores, memories and controllers), and the cost of the connectivity wiring.
We use the method employed in to compute the total chip area:
since the wiring area and the cores area can be proportionally important, we use
two factors and tuned so that the overall wire and core areas are balanced
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where the Wire_area is the area used by the connectivity wires, and the
Cores_area is the area of the memory modules, memory controllers, CPU cores,
and bus controllers.



For the connectivity cost we consider the wire length and bitwidth of the
busses, and the complexity of the bus controller. We estimate the wire length
to half the perimeter of the modules connected by that wire

where the sum is over all the modules connected by that connectivity com-
ponent, and the module-area is the area of each such module. The area of this
connectivity is then:

where Conn_bitwidth is the connectivity bitwidth, Controller_area is the area
of the connectivity controller, and and are the two scaling factors determined
as mentioned above.

We determine the cost of the on-chip cache using the cost estimation tech-
niques presented in For the cost of the custom memory modules
explored in the previous stage of our DSE approach [GDN01c] we use figures
from the Synopsys Design Compiler [Syn]. For the CPU area (used to compute
the wire lengths for the wires connecting the memory modules to the CPU), we
use figures reported for the LEON SPARC gate count in 0.25um [Gai].

Since the area of the off-chip memory is not as important as for the on-
chip components, we do not consider the off-chip memory area into our cost
function.

We compute the performance of the memory system by generating a mem-
ory simulator for the specific memory modules and connectivity architectures
[MGDN01]. We describe the timings and pipelining of the memory and connec-
tivity components using Reservation Tables, as presented in [GDN00, GHDN99]
and explained in Chapter 5. Busses may support continuous or split transac-
tions, with different levels of pipelining. These features are also captured using
the Reservation Tables model, augmented with explicit information on the pres-
ence of split or continuous transactions.

The memory system energy consumption is composed of two parts: the con-
nectivity energy consumption, and the memory modules energy consumption.

We estimate the energy consumption of the connectivity components based
on the power estimation technique presented in

where Econn/access is the energy per access consumed by the connectivity
module, Bus_bitwidth is the bitwidth of the bus, Atoggle is the probability
that a bit line toggles between two consecutive transfers, Fclock is the clock
frequency, and Cdriver and Cload are the capacitance of the buffer that drives
the connectivity, and the total load capacitance of the wires.

We compute the load capacitance of the on-chip interconnect as:
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where Lconn is the length of the connectivity (computed as described above),
and Cmm is the capacitance per mm of the wires. We assume a capacitance of
0.19pF/mm for 0.25um technology While thisfigure is for the first
metal layer, the capacitance values for the different layers are not dramatically
different

For the driver capacitance we use the approach presented in [LS94]. Assum-
ing that the size ratio in the inverter chain is 4, and the inverter that drives the
load has a capacitance of 1/4 of its load, the total capacitance of the buffer is
about 30% of the total load. The total capacitance ratio of the inverter chain is
1/4 + 1/16 + 1/64 + ... = 0.3:

We compute the cache energy consumption per access using Cacti [WJ96].
We determine the energy consumed by off-chip accesses, including the off-chip
DRAM power, I/O pins, and assuming 30mm off-chip bus length
For the off-chip connectivity, we use the capacitance figures presented in
a typical off-chip bus capacitance is 0.1pF/mm (we assume a 30mm off-chip
bus), and the bus driver capacitance is 5pF. The chip I/O pins capacitance varies
between 1pF and 10pF depending on the packaging type (we assume a capaci-
tance of 5pF for the I/O pins).

For the off-chip DRAM energy consumption there is a lot of variation be-
tween the figures considered by different researchers HWO97,

depending on the main memory type, technology. The ratio between
the energy consumed by on-chip cache accesses and off-chip DRAM accesses
varies significantly reports a ratio of 3 to 5 for accesses of same
size, and [HWO97] reports a ratio between one and two orders of magnitude;
however, it is not clear weather this includes the connectivity energy). In order
to keep our technique independent of such technology figures, and allow the
designer to determine the relative importance of these factors, we define a ratio
R:

where E_main_memory_access and Ecache_access are the energy consumed
per access by the main memory and the cache for accesses of the same size.
We assume a ratio of 5, compared to an 8k 2-way set associative cache.

We assume the energy consumed by the custom memory controllers pre-
sented in [GDN01c] to be similar to the energy consumed by the cache con-
troller.

4.3.3.2 Coupled Memory/Connectivity Exploration strategy

The quality of the final selected memory-connectivity architectures in dif-
ferent spaces, such as cost/performance, or cost/power spaces, depends on the
quality of the initial memory modules architectures selected as starting points
for the connectivity exploration. The memory modules architecture selection
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has to be driven by the same metric as the connectivity architecture selection.
For instance, when cost and performance are important, we guide the search
towards the cost/performance pareto points both in the early APEX memory
modules exploration, as well as in the ConEx connectivity exploration, and use
power as a constraint. Alternatively, when cost and power are important, we use
cost/power as the metric to guide both the APEX and the ConEx explorations.
For this, we modified the APEX [GDN01b] algorithm to use cost/power as the
exploration driver, to determine the cost/power pareto points for the memory
modules architectures. We then use these architectures as the starting point for
the connectivity exploration.

In order to verify the sensitivity of the exploration on the memory modules
architectures used as starting point, we compare three exploration strategies,
using different sets of starting memory modules architectures: (I) Pruned explo-
ration, where we select the most promising memory modules and connectivity
architectures, and perform full simulation to determine the pareto curve with-
out fully exploring the design space, (II) Neighborhood exploration, where we
expand the design space by including also the points in the neighborhood of the
architectures selected in the Pruned approach, and (III) Full space exploration,
the naive approach where we fully simulate the design space, and compute the
pareto curve.

(I) In the Pruned exploration approach we start by selecting the most promis-
ing memory modules configurations, and use them as input for the connectiv-
ity exploration phase. For each such memory module architecture, we then
explore different connectivity designs, estimating the cost, performance and
energy consumption, and selecting at each step the best cost, performance and
power tradeoffs. We then simulate only the selected designs and determine the
pareto points from this reduced set of alternatives, in the hope that we find the
overall pareto architectures, without fully simulating the design space.

(II) In order to increase the chances of finding the designs on the actual pareto
curve, we expand the explored design space by including the memory modules
architectures in the neighborhood of the selected designs. In general, this leads
to more points in the neighborhood of the pareto curve being evaluated, and
possibly selected.

(III) We compare our Pruned and Neighborhood exploration approaches to
the brute force approach, where we fully simulate the design space and fully
determine the pareto curve. Clearly, performing full simulation of the design
space is very time consuming and often intractable. We use the naive Full
space exploration approach only to verify that our Pruned and Neighborhood
exploration strategies successfully find the pareto curve designs points, while
significantly reducing the computation time.

Clearly, by intelligently exploring the memory modules and connectivity
architectures using components from a library, it is possible to explore a wide
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4.3.4 Experiments
We present Design Space Exploration (DSE) results of the combined memory

modules and connectivity architecture for a set of large realistic benchmarks to
show the performance, cost and power tradeoffs generated by our approach. The
memory modules architectures selected by our memory modules exploration
presented in Section 4.2 have been used as starting point for our connectivity
exploration. We present here the experimental results taking into account the
cost, performance and power for the full memory system, including both the
memory and the connectivity architecture.

We attempt to find the pareto curve designs without simulating the full design
space. Our exploration algorithm guides the search towards the points on the
pareto curve of the design space, pruning out the non-interesting designs (for
instance, assuming a two dimensional cost-performance design space, a design
is on the pareto curve, if there is no other design which is better in terms of both
cost and performance).

In order to verify that our Design Space Exploration (DSE) approach suc-
cessfully finds the points on the pareto curve, we compare the exploration
algorithm results with the actual pareto curve obtained by fully simulating the
design space.

4.3.4.1 Experimental Setup
We simulated the design alternatives using our simulator based on the SIM-

PRESS [MGDN01] memory model, and SHADE [CK93]. We assumed a pro-
cessor based on the SUN SPARC 4, and we compiled the applications using
gcc.

We used a set of large real-life multimedia and scientific benchmarks. Com-
press and Li are from SPEC95, and Vocoder is a GSM voice encoding applica-
tion.

We use time-sampling estimation to guide the walk through the design space,
pruning out the designs which are not interesting. We then use full simulation
for the most promising designs, to further refine the tradeoff choices. The
time sampling alternates “on-sampling” and “off-sampling” periods, assuming
a ratio of 1/9 between the on and off time intervals.

4The choice of SPARC was based on the availability of SHADE and a profiling engine; however our approach
is clearly applicable to any other embedded processor as well
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range of memory system architectures, with varied cost, performance and power
characteristics, allowing the designer to best tradeoff the different goals of the
system. We successfully find the most promising designs following the pareto-
like curve, without fully simulating the design space.



The time-sampling estimation does not have a very good absolute accuracy
compared to full simulation. However, we use it only for relative incremental
decisions to guide the design space search, and the estimation fidelity is suffi-
cient to make good pruning decisions. The estimation error is due to the cold
start problem [KHW91]: in large caches, the data accessed during a long off-
sampling period is not updated in the cache. As a result, the misses which occur
at the start of the next “on-sampling” period may not be real misses, but rather
due to the fact that the data has not been brought in the cache during the previous
“off-sampling” period. As a result the time sampling constantly over-estimates
the miss ratio [KHW91], and the fidelity of the estimation is sufficient for the
relative comparisons needed in the design space search. Moreover, the cold-
start problem is especially important in large multi-megabyte caches, such as
the ones used in [KHW91] (e.g., for a 1M cache, time-sampling overestimates
the miss ratio with roughly 20% for most benchmarks), and increases with the
size of the cache. However, in embedded systems, due to space constraints,
the on-chip caches are significantly smaller. Furthermore, the alternative to
time-sampling is set-sampling, performing sampling along the sets of the cache
[KHW91]. While set-sampling generates better absolute accuracy, it is not
suited in the presence of time-dependent techniques such as data prefetching,
where time-sampling is required [KHW91].

4.3.4.2 Results

We performed two sets of experiments: (I) Using cost/ performance to drive
the memory and connectivity exploration, and (II) Using cost/power to drive
the exploration. In each such set of experiments we present the effect of the
exploration in all the three dimensions (cost, performance and power).

(I) Figure 4.14 shows the cost/performance tradeoff for the connectivity
exploration of the compress benchmark. The X axis represents the cost of the
memory and connectivity architecture, and the Y axis represents the average
memory latency including both the memory and connectivity latencies (e.g.,
due to the cache misses, bus multiplexing, or bus conflicts).

In this experiment we used cost/ performance to drive the selection algo-
rithms both during the memory modules exploration, and during the connec-
tivity exploration. The dots represent the attempted connectivity and memory
designs. The line connecting the squares represents the designs on the cost/
performance pareto. However, the designs which have best cost/performance
behavior, do not necessarily have good power behavior. The line connecting
the triangles represents the designs in the cost/performance space which are
on the performance/power pareto curve. While the cost/performance and the
performance/power pareto curves do not coincide, they do have a point in com-
mon. However, this point has a very large cost. In general, when trading off
cost, performance and power, the designer has to give up one of the goals in
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order to optimize the other two. For instance, if the designer wants to optimize
performance and power, it will come at the expense of higher cost.

Figure 4.15 shows the performance/power tradeoffs for the connectivity ex-
ploration of the compress benchmark, using cost/performance to drive the se-
lection of the starting memory modules. The X axis represents the average
memory latency, including both the memory and connectivity components.
The Y axis represents the average energy per access consumed by the memory
and connectivity system. We use energy instead of average power consumption,
to separate out the impact of the actual energy consumed from the variations
in performance. Variations in total latency may give a false indication of the
power behavior: for instance, when the performance decreases, the average
power may decrease due to the longer latency, but the total energy consumed
may be the same.

The line connecting the squares represents the cost/performance pareto points
in the performance/power space. The line connecting the triangles, shows the
performance/power pareto points. Again, the best performance/power points
do not necessarily have also low cost. The cost/performance pareto, and the
performance/power pareto do not coincide in the performance/power space.



When trading off the three goals of the system, the designer has to give up one of
the dimensions, in order to optimize the other two. The designs which have good
cost and performance behavior (the cost/performance pareto), have in general
higher energy consumption (are located on the inside of the performance/power
pareto). The only exception is the common point, which in turn has higher cost.
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(II) Figure 4.16 and Figure 4.17 show the cost/performance and performance/
power spaces for the exploration results for compress, using cost/power to drive
the memory and connectivity exploration.

In Figure 4.16, the line connecting the squares represents the cost/performance
pareto obtained by the experiments where cost/power was used to guide the ex-
ploration, and the line connecting the stars represents the cost/performance
pareto in the case where cost/performance was used throughout the exploration
as the driver. As expected, the best cost/performance points obtained during
the cost/performance exploration are better in terms of cost and performance
than the ones obtained during the cost/power exploration.

In Figure 4.17, the line connecting the triangles represents the performance/
power pareto for the cost/performance exploration, while the line connecting
the stars represents the performance/power pareto for the cost/power explo-
ration. As expected, when using cost/power to drive the early memory modules
exploration (APEX), the overall energy figures are better.
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Similarly, the cost/power space representation of the cost/power exploration
yields better results in terms of cost and power then the cost/performance ex-
ploration.

We performed similar experiments on the Vocoder and Li benchmarks. Fig-
ure 4.18 and Figure 4.19 show the comparison between the cost/performance
and the performance/power paretos for the connectivity exploration, assuming
that the previous phase of memory modules exploration is driven by cost and
power.

Figure 4.20 and Figure 4.21 show the comparison between the cost/performance
and the performance/power paretos for the connectivity exploration for Vocoder,
while Figure 4.22 and Figure 4.23 show the comparison between the cost/performance
and the performance/power paretos for the connectivity exploration for Li.

Figure 4.24 shows the analysis of the cost/performance pareto-like points
for the compress benchmark. The design points a through k represent the most
promising selected memory-connectivity architectures. Architectures a and b
represent two instances of a traditional cache-only memory configuration, us-
ing the AMBA AHB split transaction bus, and a dedicated connection. The
architectures c through k represent different instances of novel memory and
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connectivity architectures, employing SRAMs to store data which is accessed
often, DMA-like memory modules to bring in predictable, well-known data
structures (such as lists) closer to the CPU, and stream buffers for stream-based
accesses. Architecture c contains a linked-list DMA-like memory module, im-
plementing an self-indirect data structure, using a MUX-based connection. This
architecture generates a roughly 10% performance improvement for a small cost
increase, over the best traditional cache architecture (b). The architecture d rep-
resents the same memory configuration as c, but with a connectivity containing
both a MUX-based structure and an AMBA APB bus. Similarly, architec-
tures e through k make use of additional linked-list DMAs, stream buffers, and
SRAMs, with MUX-based, AMBA AHB, ASB and APB connections. Ar-
chitecture g generates a roughly 26% performance improvement over the best
traditional cache architecture (b), for a roughly 30% memory cost increase.
Architecture k shows the best performance improvement, of roughly 30% over
the best traditional cache architecture, for a larger cost increase. Clearly, our
memory-connectivity exploration approach generates a significant performance
improvement for varied cost configurations, allowing the designer to select the
most promising designs, according to the available chip space and performance
requirements.

Figure 4.25 represents the analysis of the cost/performance pareto-like ar-
chitectures for the vocoder benchmark. The architectures a and b represent the
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traditional cache architectures with AMBA AHB and dedicated connections.
The architecture c containing the traditional cache and a stream buffer generates
a 5% performance improvement over the best traditional cache architecture (b)
for a roughly 3% cost increase. Due to the fact that the vocoder application is less
memory intensive, containing mainly stream-based accesses, which behave well
on cache architectures, the performance variation is less significant then in the
other benchmarks. However, this illustrates the application-dependent nature
of the memory and bandwidth requirements of embedded systems, prompting
the need for early memory and connectivity exploration. Clearly, without such
an exploration framework it would be difficult to determine through analysis
alone the number, amount and type of memory modules required to match the
given performance, energy and cost criteria.

Figure 4.26 represents the analysis of the cost/performance pareto-like ar-
chitectures for the Li benchmark. The memory-connectivity architectures con-
taining novel memory modules, such as linked-list DMAs implementing self-
indirect accesses, and stream buffers, connected through AMBA AHB, ASB
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and APB busses, generate significant performance variations, allowing the de-
signer to best match the requirements of the system.

In the following we present the exploration results for the compress, Li, and
vocoder benchmarks. We show only the selected most promising cost/performance
designs, in terms of their cost (in basic gates), average memory latency, and
average energy consumption per access. In Table 4.2 the first column shows the
benchmarks, the second, third and fourth columns show the cost, average mem-
ory latency and energy consumption for the selected design simulations. The
simulation results show significant performance improvement for varied cost
and power characteristics of the designs, for all the benchmarks. For instance,
when using different memory and connectivity configurations, the performance
of the compress and Li benchmarks varies by an order of magnitude. The en-
ergy consumption of these benchmarks does not vary significantly, due to the
fact that the connectivity consumes a small amount of power compared to the
memory modules.

Table 4.3 presents the coverage of the pareto points obtained by our memory
modules and connectivity exploration approach. Column 1 shows the bench-
mark, and Column 2 shows the category: Time represents the total computation
time required for the exploration, Coverage shows the percentage of the points
on the pareto curve actually found by the exploration. Average distance shows
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the average percentile deviation in terms of cost, performance and energy con-
sumption, between the pareto points which have not been covered, and the
closest exploration point which approximates them. Column 3 represents the
results for the Pruned exploration approach, where only the most promising
design points from the memory modules exploration are considered for con-
nectivity space exploration. Column 4 shows the Neighborhood exploration
results, where the design points in the neighborhood of the selected points are
also included in the exploration, and the last Column shows the results for the
brute-force full space exploration, where all the design points in the exploration
space are fully simulated, and the pareto curve is fully determined.

Note that the average distance in Table 4.3 is small, which indicates that even
though a design point on the pareto curve was not found, another design with
very close characteristics (cost, performance, power) was simulated (i.e., there
are no significant gaps in the coverage of the pareto curve).

In the Pruned approach during each Design Space Exploration phase we se-
lect for further exploration only the most promising architectures, in the hope
that we will find the pareto curve designs without fully simulating the design
space. Neighborhood exploration expands the design space explored, by in-
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cluding also the points in the neighborhood of the points selected by the Pruned
approach. We omitted the Li example from Table 4.3 due to the fact that the
Full simulation computation time was intractable.

The Pruned approach significantly reduces the computation time required for
the exploration. Moreover, full simulation of the design space is often infeasible
(due to prohibitive computation time). While in general, due to its heuristic
nature, the pruned approach may not find all the points on the pareto curve, in
practice it finds a large percentage of them, or approximates them well with
close alternative designs. For instance, the coverage for the vocoder example
shows that 83% of the designs on the pareto curve are successfully found by the
Pruned exploration. While the Pruned approach does not find all the points on
the pareto curve, the average difference between the points on the pareto and
the corresponding closest points found by the exploration is 0.29% for cost,
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2.96% for performance, and 0.92% for energy. In the compress example the
computation time is reduced from 1 month for the Full simulation to 2 days, at
the expense of less pareto coverage. However, while only 50% of the compress
designs are exactly matched by the Pruned approach, for every pareto point
missed, very close replacements points are generated, resulting in an average
distance of 0.84%, 0.77%, and 0.42% in terms of cost, performance and power
respectively, to the closest overall pareto point. Thus, our exploration strategy
successfully finds most of the design points on the pareto curve without fully
simulating the design space. Moreover, even if it misses some of the pareto
points, it provides replacement architectures, which approximate well the pareto
designs.

The Neighborhood exploration explores a wider design space than the Pruned
approach, providing a better coverage of the pareto curve, at the expense of more
computation time. For instance, for the Vocoder example, it finds 100% of the
pareto points.

By performing combined exploration of the memory and connectivity ar-
chitecture, we obtain a wide range of cost, performance and power tradeoffs.
Clearly, these types of results are difficult to determine by analysis alone, and
require a systematic exploration approach to allow the designer to best trade off
the different goals of the system.

4.3.5 Related Work
There has been related work on connectivity issues in four main areas: (I)

High-Level Synthesis, (II) System-on-Chip core-based systems, (III) Interface
synthesis, and (IV) Layout and routing of connectivity wiring,

(I) In High-Level Synthesis, Narayan et al. [NG94] synthesize the bus struc-
ture and communication protocols to implement a set of virtual communication



channels, trading off the width of the bus and the performance of the processes
communicating over it. Daveau et al. [DIJ95] present a library based explo-
ration approach, where they use a library of connectivity components, with
different costs and performance. We complement these approaches by explor-
ing the connectivity design space in terms of all the three design goals: cost,
performance and power simultaneously.

Wuytack et. al. present an approach to increase memory port
utilization, by optimizing the memory mapping and code reordering. Our tech-
nique complements this work by exploring the connectivity architecture, em-
ploying connectivity components from an IP library. Catthoor et al.
address memory allocation, packing the data structures according to their size
and bitwidth into memory modules from a library, to minimize the memory
cost, and optimize port sharing. Forniciari et al. [FSS99] present a simula-
tion based power estimation for the HW/SW communication on system-level
busses, aimed at architectural exploration. We use the connectivity and mem-
ory power/area estimation models from to drive our connectivity
exploration.

(II) In the area of System-on-Chip architectures, Givargis et al. [GV98]
present a connectivity exploration technique which employs different encod-
ing techniques to improve the power behavior of the system. However, due to
their platform-based approach, where they assume a pre-designed architecture
platform which they tune for power, they do not consider the cost of the ar-
chitecture as a metric. Maguerdichian et al. [MDK01] present an on-chip bus
network design methodology, optimizing the allocation of the cores to busses
to reduce the latency of the transfers across the busses. Lahiri et al. [LRLD00]
present a methodology for the design of custom System-on-Chip communi-
cation architectures, which propose the use of dynamic reconfiguration of the
communication characteristics, taking into account the needs of the application.

(III) Recent work on interface synthesis [COB95], [Gup95] present tech-
niques to formally derive node clusters from interface timing diagrams. These
techniques can be used to provide an abstraction of the connectivity and memory
module timings in the form of Reservation Tables [HP90]. Our algorithm uses
the Reservation Tables [GDN00, GHDN99] for performance estimation, taking
into account the latency, pipelining, and resource conflicts in the connectivity
and memory architecture.

(IV) At the physical level, the connectivity layout and wiring optimization
and estimation has been addressed. Chen et al. present a method
to combine interconnect planning and floorplanning for deep sub-micron VLSI
systems, where communication is increasingly important. Deng et al. [DM01]
propose the use of a 2.5-D layoutmodel, through a stack of single-layer mono-
lithic ICs, to significantly reduce wire length. We use the area models presented
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in and [DM01] to drive our high-level connectivity exploration ap-
proach.

None of the previous approaches have addressed connectivity exploration
in conjunction with memory modules architecture, considering simultaneously
the cost, performance, and power of the system, using a library of connectivity
components including standard busses (such as AMBA [ARM], mux-based
connections, and off-chip busses). By pruning the non-interesting designs, we
avoid simulating the complete design space, and allow the designer to efficiently
target the system goals early in the design flow.

4.4 Discussion on Memory Architecture
This work has focused primarily on the software part of the Hardware/Software

embedded system. While the Hardware/Software partitioning and Hardware
synthesis have been extensively addressed by previous work [GVNG94, Gup95],
we briefly discuss our Memory Exploration approach in the context of an overall
Hardware/ Software architecture.

The input application can be implemented either in Hardware, in Software,
or a combination of the two. We assume an initial step of Hardware/Software
Partitioning decides which parts of the application are realized in Hardware and
which in Software. The hardware parts are fed to a Hardware Synthesis step,
generating the custom ASICs on the chip, while the software parts are fed to
the compiler, producing code for the embedded processor.

There are three main issues when dealing with a system containing both
software, and hardware ASICs, compared to a software-only system: (a) the
synchronization and communication model between the software running on
the CPU, and the ASIC, (b) the memory sharing model, and (c) the memory
coherency mechanism.

(a) We assume two synchronization and communication models: (I) Shared
memory, and (II) Message Passing. (I) In shared memory model, the synchro-
nization and communication relies on a common memory space to store a set
of semaphores and common data structures. The semaphores can be accessed
through a set of atomic functions, and the hardware and software processes syn-
chronize to insure sequentiality between dependent subtasks through a set of
semaphore assignment and test functions. (II) In the message passing model, the
ASIC and the programmable CPU communicate directly, through send-receive
type protocols.

(b) We consider three memory models: (I) Shared memory model, (II) Parti-
tioned memory model, and (III) Partially partitioned memory model. (I) In the
shared memory model, we assume that both the CPU and the ASIC access a
common memory address space. The synchronization needed to insure that the
dependencies are satisfied can be implemented using either one of the two syn-
chronization models presented above. (II) In the partitioned memory model, we
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assume that the memory spaces accessed by the ASIC and the CPU are disjoint.
Each may have a local memory, but any communication between them relies on
a form of message passing. (III) In the partially partitioned memory model, we
assume that the ASIC and the CPU share a limited amount of memory space,
and rely on local memories for the more data intensive computations.

(c) The memory coherency, or write coherency mechanism insures that the
data is shared correctly across multiple memory modules, avoiding stale data.
For instance, if the the CPU and the ASIC share a variable from the off-chip
DRAM, but the CPU accesses it through the cache, while the ASIC reads directly
from the DRAM, then if the CPU writes the variable in the cache, subsequent
reads from the ASIC have to get the most recent value from the cache. Similarly,
if the ASIC writes the variable in the DRAM, local copies in the cache may
become stale, and have to be updated. In general, when a shared variable is
written, all the copies in local memories have to be updated, or invalidated.

We assume two cache-coherence mechanisms to insure the coherence be-
tween different memory modules: (I) Write invalidate, and (II) Write update.
In write invalidate, the writes which happen on the bus to the main memory
are also found by the cache through snooping, and the corresponding lines are
invalidated, setting an invalid bit. In write update, the cache line is updated
when a write is recognized. If the cache is write-through, the notification of
invalid data and the the actual data are sent at the same time. In write-back,
the notification of invalid data is sent when the dirty bit is set, and the data
is sent when the data is replaced in the cache, and the actual write occurs. A
posible alternative to this approach is to asssume that writes to shared locations
are write-through, and writes to non-shared locations are write-back (e.g., the
DEC Firefly system [TSKS87]).

Figure 4.27 shows three example architectures, with varying memory and
communication models. Figure 4.27 (a) shows a shared memory model, (b)
shows a partially partitioned memory architecture, and (c) shows a partitioned
memory architecture with message passing communication. The local memory
in the architectures (b) and (c) may contain any combination of on-chip memory
structures, such as caches, SRAMs, DMAs, or custom memory modules.

4.5 Summary and Status
In this chapter we presented an approach where by analyzing the access

patterns in the application we gain valuable insight on the access and storage
needs of the input application, and customize the memory architecture to better
match these requirements, generating significant performance improvements
for varied memory cost and power.

Traditionally, designers have attempted to alleviate the memory bottleneck
by exploring different cache configurations, with limited use of more special
purpose memory modules such as stream buffers [Jou90]. However, while re-
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alistic applications contain a large number of memory references to a diverse
set of data structures, a significant percentage of all memory accesses in the
application are generated from a few instructions, which often exhibit well-
known, predictable access patterns. This presents a tremendous opportunity
to customize the memory architecture to match the needs of the predominant
access patterns in the application, and significantly improve the memory sys-
tem behavior. We presented here such an approach called APEX that extracts,
analyzes and clusters the most active access patterns in the application, and
customizes the memory architecture to explore a wide range of cost, perfor-
mance and power designs. We generate significant performance improvements
for incremental costs, and explore a design space beyond the one traditionally
considered, allowing the designer to efficiently target the system goals. By
intelligently exploring the design space, we guide the search towards the mem-
ory architectures with the best cost/performance characteristics, and avoid the
expensive full simulation of the design space.

Moreover, while the memory modules are important, often the connectivity
between these modules have an equally significant impact on the system be-
havior. We presented our Connectivity Exploration approach (ConEx), which
trades off the connectivity performance, power and cost, using connectivity
modules from a library, and allowing the designer to choose the most promis-
ing connectivity architectures for the specific design goals.



We presented a set of experiments on large multimedia and scientific exam-
ples, where we explored a wide range of cost, performance and power tradeoffs,
by customizing the memory architecture to fit the needs of the access patterns in
the applications. Our exploration heuristic found the most promising cost/gain
designs compared to the full simulation of the design space considering all the
memory module allocations and access pattern cluster mappings, without the
time penalty of investigating the full design space.

The memory and connectivity architecture exploration approach presented in
this chapter has been implemented. The experimental results have been obtained
using our memory simulator based the SIMPRESS [MGDN01] memory model,
and SHADE [CK93].
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Chapter 5

MEMORY-AWARE COMPILATION

5.1 Motivation
In recent SOC and processor architectures, memory is identified as a key

performance and power bottleneck [Prz97]. With advances in memory tech-
nology, new memory modules (e.g., SDRAM, DDRAM, RAMBUS, etc.) that
exhibit efficient access modes (such as page mode, burst mode, pipelined access
[Pri96], [Prz97]) appear on the market with increasing frequency. However,
without compiler support, such novel features cannot be efficiently used in a
programmable system.

Furthermore, in the context of Design Space Exploration (DSE), the system
designer would like to evaluate different combinations of memory modules
and processor cores from an IP library, with the goal of optimizing the system
for varying goals such as cost, performance, power, etc.. In order to take full
advantage of the features available in each such processor-memory architecture
configuration, the compiler needs to be aware of the characteristics of each
memory library component.

Whereas optimizing compilers have traditionally been designed to exploit
special architectural features of the processor (e.g., detailed pipelining infor-
mation), there is a lack of work addressing memory-library-aware compilation
tools that explicitly model and exploit the high-performance features of such
diverse memory modules. Indeed, particularly for memory modules, a more
accurate timing model for the different memory access modes allows for a bet-
ter match between the compiler and the memory sub-system, leading to better
performance.

Moreover, with the widening gap between processor and memory latencies,
hiding the latency of the memory operations becomes increasingly important. In
particular, in the presence of caches, cache misses are the most time-consuming
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operations (orders of magnitude longer than cache hits), being responsible for
considerable performance penalties.

In this chapter we present an approach that allows the compiler to exploit
detailed timing information about the memory modules, by intelligently manag-
ing the special access modes (such as page-mode, burst-mode, etc.), and cache
miss traffic, and better hide the latency of the lengthy off-chip memory trans-
fers. In Section 5.2 we present our Timing Extraction algorithm, and its use
in the optimization of the memory transfers exhibiting efficient access modes.
In Section 5.3 we present the utilization of accurate timing information in the
presence of caches. Section 5.4 concludes with a short summary.

5.2 Memory Timing Extraction for Efficient Access Modes

Traditionally, efficient access modes exhibited by new memory modules
(such as SDRAM, DDRAM, RAMBUS, etc.) were transparent to the proces-
sor, and were exploited implicitly by the memory controller (e.g., whenever a
memory access referenced an element already in the DRAM’s row buffer, it
avoided the row-decode step, fetching it directly from the row buffer). How-
ever, the memory controller only has access to local information, and is unable
to perform more global optimizations (such as global code reordering to better
exploit special memory access modes). By providing the compiler with a more
accurate timing model for the specific memory access modes, it can perform
global optimizations that effectively hide the latency of the memory operations,
and thereby generate better performance.

In this section we describe an approach that exposes the detailed timing in-
formation about the memory modules to the compiler, providing an opportunity
to perform global optimizations. The key idea is that we combine the timing
model of the memory modules (e.g., efficient memory access modes) with the
processor pipeline timings to generate accurate operation timings. We then use
these exact operation timings to better schedule the application, and hide the
latency of the memory operations.

In Section 5.2.1 we show a simple motivating example to illustrate the ca-
pabilities of our technique, and in Section 5.2.2 we present the flow of our
approach. In Section 5.2.3 we describe our timing generation algorithm. In
Section 5.2.4 we present a set of experiments that demonstrate the use of accu-
rate timing for the TIC6201 architecture with a synchronous DRAM module,
and present the performance improvement obtained by our memory-aware com-
piler. In Section 5.2.5 we present previous work addressing memory and special
access mode related optimizations.
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5.2.1 Motivating Example

Burst mode access is a typical efficient access mode for contemporary DRAMs
(e.g., SDRAM) that is not fully exploited by traditional compilers. We use a
simple example to motivate the performance improvement made possible by
compiler exploitation of such access modes through a more accurate timing
model.

The sample memory library module we use here is the IBM0316409C [IBM]
Synchronous DRAM. This memory contains 2 banks, organized as arrays of
2048 rows x 1024 columns, and supports normal, page mode, and burst mode
accesses. A normal read access starts by a row decode (activate) stage, where
the entire selected row is copied into the row buffer. During column decode,
the column address is used to select a particular element from the row buffer,
and output it. The normal read operation ends with a precharge (or deactivate)
stage, wherein the data lines are restored to their original values.

For page mode reads, if the next access is to the same row, the row decode
stage can be omitted, and the element can be fetched directly from the row
buffer, leading to a significant performance gain. Before accessing another
row, the current row needs to be precharged.

During a burst mode read, starting from an initial address input, a number of
words equal to the burst length are clocked out on consecutive cycles without
having to send the addresses at each cycle.

Another architectural feature which leads to higher bandwidth in this DRAM
is the presence of two banks. While one bank is bursting out data, the other
can perform a row decode or precharge. Thus, by alternating between the
two banks, the row decode and precharge times can be hidden. Traditionally,
the architecture would rely on the memory controller to exploit the page/burst
access modes, while the compiler would not use the detailed timing model. In
our approach, we incorporate accurate timing information into the compiler,
which allows the compiler to exploit more globally such parallelism, and better
hide the latencies of the memory operations.

We use the simple example in Figure 5.1 (a) to demonstrate the performance
of the system in three cases: (I) without efficient access modes, (II) optimized for
burst mode accesses, but without without the compiler employing an 1 accurate
timing model, and (III) optimized for burst mode accesses with the compiler
exploiting the accurate timing model.

The primitive access mode operations [PDN99] for a Synchronous DRAM
are shown in Figure 5.1 (b): the un-shaded node represents the row decode
operation (taking 2 cycles), the solid node represents the column decode (taking
1 cycle), and the shaded node represents the precharge operation (taking 2
cycles).
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Figure 5.1 (c) shows the schedule for the unoptimized version, where all reads
are normal memory accesses (composed of a row decode, column decode, and
precharge). The dynamic cycle count here is 9 x (5 x 4) = 180 cycles.

In order to increase the data locality and allow burst mode access to read
consecutive data locations, an optimizing compiler would unroll the loop 3
times. Figure 5.1 (d) shows the unrolled code, and Figure 5.1 (e) shows the
static schedule, and the dynamic (run-time) schedule of the code1, for a schedule
with no accurate timing. Traditionally, the memory controller would handle all
the special access modes implicitly, and the compiler would schedule the code
optimistically, assuming that each memory access takes 1 cycle (the length of a

1 In Figure 5.1 (c) the static schedule and the run-time behavior were the same. Here, due to the stalls inserted
by the memory controller, they are different
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page mode access). During a memory access which takes longer than expected,
the memory controller has to freeze the pipeline, to avoid data hazards. Thus,
even though the static schedule seems faster, the dynamic cycle-count in this
case is 3 x 28 = 84 cycles.

Figure 5.1 (f) shows the effect of scheduling using accurate memory timing
on code that has already been optimized for burst mode. Since the memory
controller does not need to insert stalls anymore, the dynamic schedule is the
same as the static one (shown in Figure 5.1 (f)). Since accurate timing is
available, the scheduler can hide the latency of the precharge and row decode
stages, by for instance precharging at the same time the two banks, or executing
row decode while the other bank bursts out data. The dynamic cycle count here
is 3 x 20 = 60 cycles, resulting in a 40% improvement over the best schedule a
traditional optimizing compiler would generate.

Thus, by providing the compiler with more detailed information, the efficient
memory access modes can be better exploited. The more accurate timing model
creates a significant performance improvement, in addition to the page/burst
mode optimizations.

5.2.2 Our Approach

Figure 5.2 outlines our IP library based Design Space Exploration (DSE)
scenario. The processor-memory architecture is captured using components
from the processor and memory IP libraries in the EXPRESSION Architecture
Description Language (ADL) This architectural description is
then used to target the compilation process to the specific processor-memory
architecture chosen by the designer. In order to have a good match between the
compiler and the architecture, detailed information about resources, memory
features, and timing has to be provided.

As shown in Figure 5.2, the timing information for the compiler is generated
using two parts: (1) RTGEN, which extracts the resources of operations that
flow through the processor pipeline, using reservation tables, and (2) TIMGEN,
which extracts the timing of memory operations flowing through the memory
pipeline. For any operations executing on the processor, our compiler combines
these two timings to effectively exploit the pipeline structures both within the
processor, as well as within the memory subsystem.

Since contemporary high-end embedded processors contain deep pipelines
and wide parallelism, hazards in the pipeline can create performance degra-
dation, or even incorrect behavior, if undetected. There are three types of
hazards in the pipeline: resource, data, and control hazards [HP90]. RTGEN
[GHDN99], shown in Figure 5.2, is a technique that automatically generates
reservation tables containing detailed resource information for execution of
operations on a pipelined processor.
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Data hazards occur when the pipeline changes the order of read/write ac-
cesses to operands, breaking data dependencies [HP90]. In this chapter we
address the data hazards problem (the TIMGEN algorithm in Figure 5.2), by
marrying the timing information from memory IP modules with the timing
information of the processor pipeline architecture, and generate the operation
timings needed by the compiler to avoid such data hazards.

Our RTGEN algorithm thus addresses the resource hazards problem by auto-
matically generating the detailed Reservation Tables needed to detect structural
hazards in the pipeline.

Since memory is a major bottleneck in the performance of such embedded
systems, we then show how this accurate timing model can be used by the
compiler to better exploit memory features such as efficient access modes (e.g.,
page-mode and burst-mode), to obtain significant performance improvements.

Furthermore, we provide the system designer with the ability to evaluate
and explore the use of different memory modules from the IP library, with the
memory-aware compiler fully exploiting the special efficient access modes of
each memory component.

The next section outlines the TIMGEN algorithm.

5.2.3 TIMGEN: Timing extraction algorithm
Operation timings have long been used to detect data hazards within pipelined

processors [HP90]. However, compilers have traditionally used fixed timings
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for scheduling operations. In the absence of dynamic (run-time) data hazard
detection capabilities in the hardware (such as in VLIW processors), the com-
piler has to use conservative timings, to avoid such hazards, and ensure correct
behavior. In the presence of dynamic control capabilities the compiler may
alternatively use optimistic timings, and schedule speculatively, knowing that
the hardware will account for the potential delay.

For memory-related operations, the memory controller provides some dy-
namic control capabilities, which can for instance stall the pipeline if a load
takes a long time. In this case a traditional compiler would use fixed timings
to schedule either conservatively or optimistically the memory operations. In
the conservative approach, the compiler assumes that the memory contains no
efficient access modes, and all accesses require the longest delay. Even though
this results in correct code, it wastes a lot of performance. Alternatively, the
optimistic schedule is the best the compiler could do in the absence of accurate
timing: the compiler assumes that all the memory accesses have the length of
the fastest access (e.g., page mode read), and relies on the memory controller
to account for the longer delays (e.g., by freezing the pipeline). Clearly, this
creates an improvement over the conservative schedule. However, even this op-
timistic approach can be significantly improved by integrating a more accurate
timing model for memory operations. Indeed, a memory-aware compiler can
better exploit the efficient memory access modes of a memory IP by hiding the
latency of the memory operations. This creates an opportunity for considerable
further performance improvements.

As shown in Figure 5.2, our timing generation algorithm, called TIMGEN,
starts from an EXPRESSION ADL containing a structural descrip-
tion of the processor pipeline architecture, and an abstraction of the memory
module access mode timings, and generates the operation timings, consisting
of the moments in time (relative to the issue cycle of the operation) when each
operand in that operation is read (for sources) or written (for destinations).

To illustrate the TIMGEN algorithm, we use the example architecture in
Figure 5.3, based on the TI TMS320C6201 VLIW DSP, with an SDRAM block
attached to the External Memory Interface (EMIF). For the sake of illustration,
Figure 5.3 presents the pipeline elements and the memory timings only for load
operations executed on the D1 functional unit.

The TIC6201 processor contains 8 functional units, an 11-stage pipeline
architecture, and no data cache. The pipeline contains: 4 fetch stages (PG,
PS, PW, PR), 2 decode stages (DP, DC), followed by the 8 pipelined functional
units (L1, M1, S1, D1, L2, M2, S2 and D2). In Figure 5.3 we present the
Dl load/store functional unit pipeline with 5 stages: D1_E1, D1_E2, EMIF,
MemCtrl_E1 and MemCtrl_E2. The DRAM1 represents the SDRAM memory
module attached to the EMIF, and RFA represents one of the two TIC6201
distributed register files.
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A typical memory operation flows through the processor pipeline until it
reaches the D1_E1 stage. The D1_E1 stage computes the load/store address,
D1_E2 transfers the address across the CPU boundary, to the EMIF, which
sends the read/write request to the memory module. Since the SDRAM access
may incur additional delay depending on the memory access mode, the EMIF
will wait until the SDRAM access is finished. MemCtrl_E1 then transfers the
data received from EMIF back into the CPU, and MemCtrl_E2 writes it to the
destination register.

The graphs inside the DRAM1 ofFigure 5.3 represent the SDRAM’s memory
timings as an abstraction of the memory access modes, through combinations of
a set of primary operation templates corresponding to the row-decode, column-
decode and precharge (similar to Figure 5.1 (b)). Normal Read (NR) represents a
normal memory read, containing a row-decode, column-decode and precharge.
First Page Mode (FPMR) represents the first read in a sequence of page-mode
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reads, which contains a row precharge, a row-decode and a column decode. The
next page mode operations in the sequence, shown as Next Page Mode (NPMR),
contain only a column-decode. Similarly, Next Burst (NBR) represents burst-
mode reads which contain only the bursting out of the data from the row-buffer.
The Last Page Mode (LPMR) and Last Burst Mode (LBR) Read are provided
to allow precharging the bank at the moment when the page-mode or burst
sequence ends (instead of waiting until the next sequence starts), thus allowing
for more optimization opportunities.

The TIMGEN algorithm is outlined in Figure 5.4. The basic idea behind the
TIMGEN algorithm is that during execution, an operation proceeds through a
pipeline path, and accesses data through some data transfer paths. For memory
operations, the data transfer paths can access complex memory modules (e.g.,
SDRAM), and the operation may be delayed based on the memory access
mode (e.g., normal/page/burst mode). Therefore, we can collect detailed timing
information regarding each operand for that operation, by tracing the progress
of the operation through the pipeline and storage elements.

To demonstrate how the TIMGEN algorithm works, we use the load operation
LDW.D1 RFA0[RFA1], RFA2, executed on the architecture shown in Figure 5.3.
Assuming this load is a first read in a sequence of page-mode reads, we want
to find in what cycle the base argument (RFA0), offset argument (RFA1), and
the implicit memory block argument (the DRAM bank) are read, and in what
cycle the destination register argument (RFA2) is written.

Detailed timing is computed by traversing the pipeline paths, data transfer
paths, and complex memory modules, and collecting the cycle where each
argument is read/written. In this instance, the LDW .D1 RFA0[RFA1], RFA2
operation starts by traversing the 4 fetch pipeline stages (PG, PS, PW, PR), and
2 decode stages (DP, DC). Then, the operation is directed to the stage 1 of the
D1 functional unit (D1_E1) 2. Here, the two source operands, representing the
base register and the offset register, are read from the RFA register file (RFA0
and RFA1), and the address is computed by left-shifting the offset by 2, and
adding it to the base. Thus, the base and offset are read during the stage 7 of
the pipeline.

During stage D1_E2, the address is propagated across the CPU boundaries,
to the External Memory Interface (EMIF). Here, the EMIF sends the address
to the SDRAM block, which starts reading the data. Depending on the type
of memory access (normal/page/burst) and on the context information (e.g.,
whether the row is already in the row buffer), the SDRAM block may require
a different amount of time. Assuming that this load operation is the first in a
sequence of page mode reads, TIMGEN chooses the First Page Mode (FPM)

2For the sake of clarity, the other functional units have not been represented
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template from the SDRAM block. Here we need to first precharge the bank,
then perform a row-decode followed by a column decode. During the row-
decode, the row part of the address is fed to the row decoder, and the row
is copied into the row buffer. During column-decode, the column part of the
address is fed to the column decoder, and the corresponding data is fetched
from the row buffer. Since the prefetch and row-decode require 2 cycles each,
and the column-decode requires 1 cycle, the data will be available for the EMIF
5 cycles after the EMIF sent the request to the SDRAM block. Thus the data is
read 14 cycles after the operation was issued.

During the MemCtrl_E1 stage, the data is propagated back across the CPU
boundary. The MemCtrl_E2 stage writes the data to the register file destination
(RFA2), 16 cycles after the operation issue.

In this manner, the TIMGEN algorithm (Figure 5.4) computes the detailed
timings of all the arguments for that given operation: the base argument (RFA0)
and the offset argument (RFA1) are read during stage 7 of the pipeline, the
memory block (the SDRAM array) is read during stage 14, and the destination
argument (RFA2) is written during stage 16. A detailed description of the
algorithm can be found in [GDN99].

The worst case complexity of TIMGEN is , where x is the maximum
number of pipeline stages in the architecture, and y the maximum number of data
transfers in one pipeline stage. Most contemporary pipelined architectures have
between 5 and 15 stages in the pipeline, and 1 to 3 data transfer paths per pipeline
stage, leading to reasonable computation time when applied to different pipeline
architectures and memory modules with varying access modes. Since during
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compilation, the timings for all the operations in the application are required,
we can compute before-hand these timings, and store them in a database.

5.2.4 Experiments
We now present a set of experiments demonstrating the performance gains

obtained by using accurate timing in the compiler. We first optimize a set of
benchmarks to better utilize the efficient memory access modes (e.g., through
memory mapping, code reordering or loop unrolling 3 [PDN98]), and then we
use the accurate timing model to further improve the performance by hiding
the latencies of the memory operations. To separate out the benefit of the better
timing model from the gain obtained by a memory controller exploiting the
access mode optimizations and the access modes themselves, we present and
compare two sets of results: (1) the performance gains obtained by scheduling
with accurate timing in the presence of a code already optimized for memory
accesses, and (2) the performance of the same memory-access-optimized code
(using less accurate timing) scheduled optimistically, assuming the shortest
access time available (page-mode access), and relying on the memory controller
to account for longer delays. This optimistic scheduling is the best alternative
available to the compiler, short of an accurate timing model. We also compare
the above approaches to the performance of the system in the absence of efficient
memory access modes.

5.2.4.1 Experimental Setup

In our experiments, we use an architecture based on the Texas Instruments
TIC6201 VLIW DSP, with one IBM0316409C synchronous DRAM [IBM]
block exhibiting page-mode and burst-mode access, and 2 banks. The TIC6201
is an integer-point 8-way VLIW processor, with no data cache, as explained
earlier. The External Memory Interface (EMIF) [Tex] allows the processor to
program information regarding the memory modules attached, and control them
through a set of control registers. We assume the SDRAM has the capability
to precharge a specific memory blank (using the DEAC command), or both
memory banks at the same time (using the DCAB command), and to perform a
row decode while the other bank bursts out data (using the ACTV command).

The applications have been compiled using our EXPRESS [HDN00] re-
targetable optimizing ILP compiler. Our scheduler reads the accurate timing
model generated by the TIMGEN algorithm, and uses Trailblazing Percolation
Scheduling (TiPS) [NN93] to better target the specific architecture. TiPS is a
powerful Instruction Level Parallelism (ILP) extraction technique, which can

3Loop unrolling trades-off performance against code size and register pressure [PDN98] (we assumed 32
registers available).
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fully exploit the accurate operation timings, by highly optimizing the sched-
ule. The cycle counts have been computed using our structural cycle-accurate
simulator SIMPRESS

5.2.4.2 Results

The first column in Table 5.1 shows the benchmarks we executed (from
multimedia and DSP domains). The second column shows the dynamic cycle
counts when executing the benchmarks on the architecture using only normal
memory accesses (no efficient memory access modes, such as page/burst mode).

The third column represents the dynamic cycle counts optimized for efficient
access modes, but with no accurate timing model. For fairness of the compar-
ison we compile using the optimistic timing model, and rely on the memory
controller to stall the pipeline when the memory accesses take longer then ex-
pected. Notice that by using these efficient access modes, and optimizing the
code to better exploit them (e.g., by loop unrolling), we obtain a very high
performance gain over the baseline unoptimized case.

The fourth column represents the dynamic cycle counts using both efficient
access modes, and using an accurate timing model to better hide the latency of
the memory operations. By comparing these figures to the previous column,
we separate out the performance gains obtained by using an accurate timing
model, in addition to the gains due to the efficient access mode optimizations.
The fifth column shows the percentage performance improvement of the results
for the code optimized with accurate timing model (fourth column), compared
to the results optimized without accurate timing model (third column).

The performance gains from exploiting detailed memory timing vary from
6% (in GSR, where there are few optimization opportunities), to 47.9% (in SOR,
containing accesses which can be distributed to different banks and memory
pages), and an average of 23.9% over a schedule that exploits the efficient access
modes without detailed timing.

While the core of our TIMGEN optimization (that uses accurate timing in-
formation in the compiler to improve the performance) does not generate code
size increase, the code transformations performed by the traditional optimiz-
ing compiler (such as loop unrolling [PDN98]) may generate increased code
size. Table 5.2 presents the code size increase generated by the traditional loop
transformations. The first column shows the benchmarks. The second col-
umn shows the number of assembly lines for the unoptimized base-line code,
and the third column shows the number of assembly lines after the optimizing
compiler performs code transformations (such as loop unrolling and code re-
ordering). The last column shows the percentage code size increase over the
unoptimized code. The code size increase varies between 0%, for SOR, where
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enough page-mode and burst-mode accesses were already present in the code
without program transformations, and 132%, for mm, where aggresive loop
unrolling has been performed.

While these code-expanding transformations improve the locality of the ac-
cesses to the DRAM page, they are not always needed. Even in the absence of
such transformations, directly using the efficient access modes such as page-
and burst-mode accesses, results in significant performance improvements (e.g.,
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SOR, dhrc, dequant, leafplus). Moreover, for area-constrained embedded sys-
tems, the designer can trade-off code size against performance, by limiting the
unroll factor. Alternatively, when the access patterns are uniform across the ap-
plication, memory allocation optimizations that increase the page-locality (such
as interleaving the simultaneously accessed arrays [PDN99]), can be used to
replace the loop transformations, thus avoiding the code size increase.

The large performance gains obtained by using the more accurate operation
timings are due to the better opportunities to hide the latency of the lengthy
memory operations, by for instance performing row-decode, or precharge on
one bank, while the other bank is bursting out data, or using normal compute
operations to hide the latency of the memory operations. This effect is partic-
ularly large in the benchmarks where there are many operations available to
hide in parallel with the memory operations (e.g., SOR, beam, IDCT, etc.). In
cases when the memory access patterns do not allow efficient exploitation of the
SDRAM banks (e.g., GSR), the gain is smaller. However, we are able to exploit
accurate timing information for many multimedia and DSP applications, since
they usually contain multiple arrays, often with two or more dimensions, which
can be spread out over multiple memory banks.

5.2.5 Related Work

Related work on memory optimizations has been addressed previously both
in the custom hardware synthesis and in the embedded processor domains. In
the context of custom hardware synthesis, several approaches have been used
to model and exploit memory access modes. Ly et. al. [LKMM95] use be-
havioral templates to model complex operations (such as memory reads and
writes) in a CDFG, by enclosing multiple CDFG nodes and fixing their relative
schedules (e.g., data is asserted one cycle after address for a memory write
operation). However, since different memory operations are treated indepen-
dently, the scheduler has to assume a worst-case delay for memory operations-
missing the opportunity to exploit efficient memory access modes such as page
and burst mode.

Panda et. al. [PDN98] outline a pre-synthesis approach to exploit efficient
memory access modes, by massaging the input application (e.g., loop unrolling,
code reordering) to better match the behavior to a DRAM memory architecture
exhibiting page-mode accesses. Khare et. al. [KPDN98] extend this work to
Synchronous and RAMBUS DRAMs, using burst-mode accesses, and exploit-
ing memory bank interleaving.

Wuytack et. al. present an approach to increase memory port
utilization, by optimizing the memory mapping and code reordering. Our tech-
nique complements this work by exploiting the efficient memory access modes
to further increase the memory bandwidth.
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While the above techniques work well for custom hardware synthesis, they
cannot be applied directly to embedded processors containing deep pipelines
and wide parallelism: a compiler must combine the detailed memory timing
with the processor pipeline timing to create the timing for full-fledged operations
in the processor-memory system.

Processors traditionally rely on a memory controller to synchronize and uti-
lize specific access modes of memory modules (e.g., freeze the pipeline when
a long delay from a memory read is encountered). However, the memory con-
troller only has a local view of the (already scheduled) code being executed.
In the absence of an accurate timing model, the best the compiler can do is to
schedule optimistically, assuming the fastest access time (e.g., page mode), and
rely on the memory controller to account for longer delays, often resulting in
performance penalty. This optimistic approach can be significantly improved
by integrating an accurate timing model into the compiler. In our approach, we
provide a detailed memory timing model to the compiler so that it can better
utilize efficient access modes through global code analysis and optimizations,
and help the memory subsystem produce even better performance. We use these
accurate operation timings in our retargetable compiler to better hide the latency
of the memory operations, and obtain further performance improvements.

Moreover, in the absence of dynamic data hazard detection (e.g., in VLIW
processors), these operation timings are required to insure correct behavior: the
compiler uses them to insert NOPs in the schedule to avoid data hazards. In the
absence of a detailed timing model, the compiler is forced to use a pessimistic
schedule, thus degrading overall performance.

In the embedded and general purpose processor domain, a new trend of in-
struction set modifications has emerged, targeting explicit control of the memory
hierarchy, through for instance prefetch, cache freeze, and evict-block opera-
tions (e.g., TriMedia 1100, StrongArm 1500, IDT R4650, Intel IA 64, Sun
UltraSPARC III, etc. [hot]). Even though such operations can improve mem-
ory traffic behavior, they are orthogonal to the specific library modules used. By
exploiting detailed timing of efficient memory access modes, we can provide
further performance improvement opportunities.

In the domain of programmable SOC architectural exploration, recently
several efforts have proposed the use of Architecture Description Languages
(ADLs) to drive generation of the software toolchain (compilers, simulators,
etc.) ([HD97], [Fre93], [Gyl94], [LM98]). However, most of these
approaches have focused primarily on the processor and employ a generic model
of the memory subsystem. For instance, in the Trimaran compiler [Tri97], the
scheduler uses operation timings specified on a per-operation basis in the MDes
ADL to better schedule the applications. However they use fixed operation tim-
ings, and do not exploit efficient memory access modes. Our approach uses
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EXPRESSION a memory-aware ADL that explicitly provides a
detailed memory timing to the compiler and simulator.

Moreover, in the context of Design Space Exploration (DSE), when different
processor cores and memory IP modules are mixed and matched to optimize
the system for different goals, describing the timings on a per-operation ba-
sis requires re-specification whenever the pipeline architecture or the memory
module is changed. Since changes in the pipeline and memory architecture
impact the timings of all operations (not only memory related), updating the
specification during every DSE iteration is a very cumbersome and error prone
task. Instead, in our approach we extract these operation timings from the pro-
cessor core pipeline timing and the storage elements timings, allowing for faster
DSE iterations. No previous compiler can exploit detailed timing information
of efficient memory access modes offered by modern DRAM libraries (e.g.,
SDRAM, RAMBUS).

Recent work on interface synthesis [COB95], [Gup95] present techniques to
formally derive node clusters from interface timing diagrams. These techniques
can be applied to provide an abstraction of the memory module timings required
by our algorithm.

Our technique generates accurate operation timing information by marrying
the pipeline timing information from the processor core module, with timing
information from the memory library modules, and uses it in a parallelizing
compiler to better target the processor-memory system. We exploit efficient
memory access modes such as page-mode and burst-mode, to increase the
memory bandwidth, and we use the accurate timing information to better hide
the latency of the memory operations, and create significant performance im-
provements. We support fast DSE iterations, by allowing the designer to plug
in a memory module from an IP library, and generate the operation timings, in
a compiler-usable form.

5.3 Memory Miss Traffic Management
Traditional optimizing compilers focused mainly on cache hit accesses (e.g.,

cache hit ratio optimizations), but did not actively manage the cache miss traffic.
They optimistically treated all the memory accesses as cache hits, relying on the
memory controller to hide the latency of the longer cache miss accesses. How-
ever, not all cache misses can be avoided (e.g., compulsory misses). Moreover,
since the memory controller has only access to a local view of the program, it
cannot efficiently hide the latency of these memory accesses. This optimistic
approach can be significantly improved by integrating an accurate timing model
into the compiler, and hiding the latency of the longer miss accesses. By pro-
viding the compiler with cache hit/miss traffic information and an accurate
timing model for the hit and miss accesses, it is possible to perform global opti-
mizations and obtain significant performance improvements. We have not seen
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any previous work addressing memory-aware compilation tools that focus on
the cache miss traffic, and specifically target the memory bandwidth, by using
cache behavior analysis and accurate timing to aggressively overlap cache miss
transfers.

The main contribution is the idea of explicitly managing the cache misses
from the code to better utilize the memory bandwidth, and better overlap them
with the cache hits and CPU operations. Since the misses are the most time-
consuming operations, and represent the bottleneck in memory-intensive appli-
cations, by focusing on them first, we can reduce the memory stalls and improve
performance.

In Section 5.3.1 we show a simple motivating example to illustrate the ca-
pabilities of our technique, and in Section 5.3.2 we describe our miss traffic
management algorithm. In Section 5.3.3 we present a set of experiments that
demonstrate the explicit management of main memory transfers for the TIC6211
architecture with a cache-based memory architecture, and present the perfor-
mance improvements obtained by our memory-aware compiler. In Section 5.3.4
we present previous work addressing cache and memory optimizations.

5.3.1 Illustrative example
We use the simple illustrative example in Figure 5.5 (a) to demonstrate the

performance improvement of our technique. In this example we assume a cache
hit latency of 2 cycles, cache miss latency of 20 cycles, and non-blocking writes
which take 2 cycles. We use a 16KB direct mapped cache with lines of 4 words,
each word 4 bytes. For clarity of the explanation we assume no parallelism or
pipelining available between cache misses4, but cache hits can be serviced at
the same time as cache misses.

We present the example code in three cases: (I) the traditional approach,
where the compiler uses optimistic timing to schedule the memory operations,
assuming they are all hits, and relies on the memory controller to account for
misses, (II) the first phase of the miss traffic optimization, with cache miss traffic
analysis and accurate miss timing, and (III) the second phase of the miss traffic
optimization, with cache analysis and accurate timing, as well as aggressively
optimized miss traffic schedule.

The primitive operation nodes used in Figure 5.5 represent the cache miss,
cache hit, addition, and memory write operations. The shaded nodes grouping
several such primitive nodes represent loop iterations.

I. In the absence of accurate timing information, the best the compiler can
do is to treat all the memory accesses as hits, and schedule them optimistically,
relying on the memory controller to account for longer delays. Figure 5.5

4Our model however allows us to describe and exploit any level of pipelining and parallelism in the memory
subsystem [GDN00], [GHDN99]
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(b) presents the static schedule and the dynamic behavior for the traditional
optimistic scheduling approach. In the example from Figure 5.5 (a) every fourth
access to the arrays a and b results in a cache miss. As a result, in every fourth
iteration the memory controller has to insert stalls to account for the latency of
the cache misses, generating a total dynamic cycle count of 256 cycles.

II. By analyzing the cache behavior, and providing accurate timing informa-
tion for all the accesses, the compiler can better hide the latency of the cache
misses, and improve overall performance. Since we know that every fourth
access to arrays a and b results in a miss, we unroll the loop 4 times (shown
in Figure 5.5 (c)), and isolate the cache misses, to allow the compiler to attach
accurate timing information to the memory accesses. The first 2 accesses in the
unrolled loop body (a[i] and b[i]) result in cache misses, while all the other ac-
cesses result in hits. The compiler can attach accurate timing to the hit and miss
accesses, to schedule the operations and hide some of the latencies associated
with the memory operations. Figure 5.5 (d) shows the dynamic behavior 5 for
the code in Figure 5.5 (c) scheduled using accurate timing and cache behavior
information. The dynamic cycle count in this case is 220 cycles, resulting in a
16% improvement over the traditional approach.

III. After performing cache analysis and attaching accurate timing informa-
tion to the memory accesses, we aggressively schedule the miss traffic to create
more opportunity for memory access overlap. By recognizing that often (es-
pecially after cache locality optimizations have been applied), accesses to the
same cache line are close together in the code, the performance can be fur-
ther improved. Since the first access to a cache line generates a miss and the
subsequent accesses to that line have to wait for that miss to complete, the com-
piler is limited in its capability to efficiently schedule these operations (we will
introduce in Section 5.3.2 the notion of “cache dependency”, which captures
such information). However, by overlapping the cache miss to one cache line
with cache hits to a different cache line, it is possible to increase the potential
parallelism between memory operations, generating further performance im-
provements. For instance, the cache miss a[i] from Figure 5.5 (c) accesses the
same cache line as the hits in a[i+l], a[i+2], and a[i+3], and requires them to
wait for the completion of the transfer from the main memory. By shifting the
array accesses a[i] and b[i] from iteration i to the previous iteration, i-1, we
allow for more parallelism opportunities. Figure 5.5 (e) shows the unrolled and
shifted code, which further optimizes the cache miss traffic by overlapping the
cache misses to one cache line with the cache hits from another cache line.

Figure 5.5 (f) shows the dynamic behavior for the unrolled and shifted code,
optimized using accurate timing and cache behavior information to aggressively

5The static schedule and the dynamic execution in this case are the same
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overlap the cache miss traffic (the figure does not depict the loop prologue and
epilogue). The dynamic cycle count is 187 cycles, generating a further 17.6%
performance improvement over the already optimized version from Figure 5.5
(d).

Thus, a more accurate timing model and cache behavior information allows
the compiler to more aggressively overlap the cache hit/miss operations, and
create significant performance improvement over the traditional optimistically
scheduled approach.

5.3.2 Miss Traffic Optimization Algorithm
We present in the following the Miss Traffic Optimization algorithm (called

MIST), which performs aggressive scheduling of cache miss traffic to better tar-
get the memory subsystem architecture, and generate significant performance
improvements. The MIST algorithm receives as input the application code,
along with the memory hierarchy timing model in the form of operation tim-
ings [GDN00], and the memory subsystem parallelism and pipelining model
captured as Reservation Tables [GHDN99], both generated from an EXPRES-
SION description of the processor/memory system architecture.
MIST produces as output the application code optimized for cache miss traffic.

Figure 5.6 presents the Miss Traffic Optimization algorithm. The first step
performs reuse analysis and determines the array accesses resulting in misses.
The second step isolates the misses in the code through loop transformations,
and the third step attaches accurate timings to these isolated accesses. The
fourth step determines the dependences between the hits to a cache line and
the misses which fetch the data from the main memory for that cache line,
while the fifth step performs loop shifting to transform these dependences from
intra-iteration into loop-carried dependences. The last step performs Instruc-
tion Level Parallelism (ILP) extraction, to aggressively overlap the memory
operations.
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Whereas the main contribution of this approach is the idea of optimizing
the cache miss traffic to better utilize the memory bandwidth, the loop shifting
algorithm is only an instance of such a miss transfer optimization we propose.
Once the information regarding miss accesses along with the accurate timing,
pipelining and parallelism models are known, other parallelizing optimizations
such as software pipelining can be successfully applied.

We will use the example code from Figure 5.5 (a) to illustrate the MIST
algorithm. While this example has been kept simple for clarity of the expla-
nations (single-dimensional arrays, simple array index functions and no nested
loops), our algorithm can handle multi-dimensional arrays, with complex index
functions, accessed from multiple nested loops.

Step 1 performs cache behavior analysis, predicting the cache misses, while
Step 2 isolates these misses in the code through loop transformations. We use
a standard cache behavior analysis and miss isolation technique presented in
[MLG92] and [Wol96a] 6. For instance, the array reference a[i] from Figure 5.5
(a) results in a miss access every 4th iteration of the loop (assuming a cache
line size 4), and the set of predicted cache misses is:

Figure 5.5 (c) shows the isolation of the cache misses of the array access
a[i] in the original example through loop transformations. After unrolling the
loop 4 times, the first access to array a in the body of the unrolled loop (a[i])
generates always a miss, while other 3 accesses (a[i+l], a[i+2], a[i+3]) generate
hits.

The third step of the MIST algorithm attaches the accurate timing model for
each of the array accesses, depending on whether it represents hits or misses.
The timing information is received as an input by the MIST algorithm, and
specifies for each operation the moment when the operands are read/written and
the latency of the operation [GDN00]. Additionally, a model of the pipelining
and parallelism, represented as Reservation Tables [GHDN99] is attached to
each operation. Together, the timing and the pipelining/parallelism models
allow the compiler to aggressively schedule these operations.

For instance, for the array access a[i] in Figure 5.5 (c) which represents cache
misses, we attach the latency of 20 cycles, along with the reservation table
representing the resources used during execution (e.g., fetch, decode, Id/st unit,
cache controller, memory controller, main memory, etc.). The operation timing
and reservation table models are detailed in [GHDN99] and [GDN00].

The miss access to a cache line is responsible for bringing the data into the
cache from the main memory. Hit accesses to that cache line have to wait on

6We could also use alternative techniques such as those presented in [GMM99].
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the access which generated the miss on that line to complete, making the data
available in the cache. In order to aggressively schedule such instructions, the
compiler must be aware of this dependence between the hit access, and the
miss access to the same cache line. In the following we will call this a “cache
dependence”.

The fourth step determines cache dependences between different memory
accesses. The cache dependence analysis algorithm is presented in Figure 5.7.
There is a cache dependence between two accesses if they refer to the same
cache line, one of them represents a miss, and the other a hit. The two accesses
refer to the same cache line if there is group spatial locality between them (as
determined in Step 1). For instance, in the example code from Figure 5.5 (c),
a[i+l] depends on a[i], since a[i] and a[i+l] refer to the same cache line, and
a[i] generates a miss. The cache dependences are used in the following to guide
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loop shifting and parallelization, and facilitate the overlap between memory
accesses which do not depend on each other.

In Step 5 of the Memory Traffic Optimization algorithm we perform loop
shifting to increase the parallelism opportunity between cache miss and hit
accesses. The loop shifting algorithm is presented in Figure 5.8.

Often memory accesses which address the same cache line are close to-
gether in the code (especially after performing cache optimizations such as
tiling [PDN99]). As a result, the cache hits and the miss to the same line create
long dependence chains, which prohibit the compiler from aggressively over-
lapping these memory accesses (even if the compiler would optimistically over-
lap them, the memory controller would insert stalls, resulting in performance
penalties). Step 5 performs loop shifting to transform the cache dependences
from intra-iteration dependences into loop-carried dependences. By reducing
the intra-iteration dependence chains, we increase the potential parallelism in
the loop body, and allow the compiler to perform more aggressive scheduling
of the memory operations. In the example from Figure 5.5 (c), the miss ac-
cesses a[i] and b[i] create a cache dependence on the hits from a[i+l], b[i+l],
etc.. To reduce the dependence chains in the loop body (by transforming the
intra-iteration dependences into loop-carried dependences), we shift the miss
accesses a[i] and b[i] to the previous iteration, as shown in Figure 5.5 (e). As
a result an increased parallelism is exposed in the loop body, and the compiler
can better overlap the memory operations. Of course this loop shifting tech-
nique results in increased code size but yields better performance. Therefore,
for space-critical embedded applications, the designer will need to tradeoff
increase in code size for improved performance.

In Step 6 we use an Instruction Level Parallelism (ILP) scheduling approach
to parallelize the operations in the loops, based on the accurate timing models
derived in the Step 3. While other ILP scheduling technique could be used
as well to parallelize the code, we use Trailblazing Percolation Scheduling
(TiPS) [NN93], a powerful ILP extraction technique which allows paralleliza-
tion across basic-block boundaries.

Due to the accurate timing information, and the loop shifting which increases
the potential parallelism between memory accesses, the ILP scheduling algo-
rithm generates significantly more parallelism than in the traditional version,
with optimistic timing for the memory accesses. The resulting code presents a
high degree of parallelism in the memory miss traffic, efficiently utilizing the
main memory bandwidth, and creating significant performance improvements.

5.3.3 Experiments
We present a set of experiments demonstrating the performance gains ob-

tained by aggressively optimizing the memory miss traffic on a set ofmultimedia
and DSP benchmark s. We perform the optimization in two phases: first we iso-
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late the cache misses and attach accurate hit and miss timing to the memory
accesses, to allow the scheduler to better target the memory subsystem archi-
tecture. We then further optimize the cache miss traffic, by loop shifting to
reduce the intra-iteration dependence chains due to accesses to the same cache
line, and allow more overlap between memory accesses. We compare both
these approaches to the traditional approach, where the scheduler uses an opti-
mistic timing to parallelize the operations, the best alternative available to the
compiler, short of accurate timing and cache behavior information.

5.3.3.1 Experimental setup

In our experiments we use an architecture based on the Texas Instruments
TIC6211 VLIW DSP, with a 16k direct mapped cache. The TIC6211 is an
integer 8-way VLIW processor, with 2 load/store units. The latency of a hit is
2 cycles, and of a miss is 20 cycles.

The applications have been compiled using the EXPRESS [HDN00] retar-
getable optimizing ILP compiler, and the Trailblazing Percolation Schedul-
ing (TiPS) [NN93] algorithm, a powerful Instruction Level Parallelism (ILP)
scheduling technique. The cycle counts have been computed using our cycle-
accurate structural simulator SIMPRESS The timing models have
been generated using the TIMGEN Timing Generation algorithm [GDN00]
and the pipelining/parallelism models in the form of Reservation Tables have
been generated using the RTGEN Reservation Tables Generation algorithm
[GHDN99] from an EXPRESSION description of the architecture. The timing
and reservation tables generated from EXPRESSION model both the memory
subsystem architecture and the processor pipeline. To clearly separate out the
performance improvement obtained by the miss traffic optimization algorithm,
we performed the best schedule available in the traditional version, using TiPS,
and accurate timing, pipelining and parallelism information for both the proces-
sor, and the cache hit operations, while the cache miss operations are handled
by the memory controller.

5.3.3.2 Results

The first column in Table 5.3 shows the benchmarks we executed (from mul-
timedia and DSP domains). The second column represents the dynamic cycle
count for the traditional approach, using an optimistic timing for the memory
accesses, assuming that all accesses are cache hits, and no loop optimizations
performed. The third column represents the dynamic cycle count for the first
phase of our optimization, using accurate timing and cache behavior informa-
tion, while the fourth column shows the corresponding percentile performance
improvement over the traditional approach. The fifth column represent the
dynamic cycle count for the second phase of our optimization, using both accu-
rate timing and cache behavior information and optimized for cache miss traffic
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through loop shifting. The sixth column represents the percentile performance
improvement over the first phase of our optimization, while the last column
shows the improvement of the second phase over the base-line traditional ap-
proach.

The performance improvement due to providing the compiler with informa-
tion on the memory accesses which result in hits and misses, and attaching ac-
curate timing information for each of these (shown in columns 3 and 4) varies
between 15.2% (for beam, where the cache miss isolation was conservative,
optimizing only the misses in the innermost loop) and 52.8% (for gsr, where
the loop body contains multiple misses which can be efficiently overlapped),
resulting in an average of 34.1% gain.

The extra performance obtained by further overlapping the misses to one
cache line with cache hits to different lines through loop shifting (shown in
columns 5 and 6) varies between 0% (for gsr, where there are enough indepen-
dent accesses in the loop body to parallelize without loop shifting), and 45.7%
(for mm, where the intra-iteration dependence chain between the miss and the
hits to the same cache line is significantly reduced through loop shifting), gen-
erating an average of 21.3% further improvement over the first phase of the
optimization.

The overall performance improvement obtained by both phases of the op-
timization over the traditional approach (shown in column 7), varies between
37.6% for idct (where in order to keep the degree of loop unrolling low we
used conservative cache prediction and isolation information, by heuristically
considering some of the hits as misses), and 85.2% (in wavelet), with an aver-
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age of 61.6%. In general, when a hit is wrongly predicted as a cache miss, we
schedule it earlier, generating no penalty. When a miss is wrongly predicted as
a cache hit, the resulting schedule will be similar to the traditional approach.

Due to the program trasformations such as loop unrolling and shifting, the
performance improvement comes at the cost of an increase in code size. In
Table 5.4 we present the code size increase for the set of multimedia benchmarks.

Column 1 in Table 5.4 shows the benchmark. Column 2 shows the number of
assembly lines in the original application. Column 3 shows the unrolling factor
for the phase I of the optimization, while Column 4 presents the number of
assembly lines for the unrolled code. Column 5 shows the percentage increase
in code size for the first phase of the MIST optimization (cache miss isolation),
compared to the original code size. Column 6 shows the unroll factor for the
second phase of the optimization (performing further program transformations
to overlap cache misses with hits to a different cache line), along with the
number of memory accesses shifted to previous iterations of the loop, while
the Column 7 presents the number of lines of assembly code for phase II of
the miss traffic optimization. The last column shows the percentage code size
increase generated by the second phase of the optimization.

For our multimedia kernels, the code size increase varies between 19% (for
idct, where we limited the unrolling factor, performing conservative cache be-
havior analysis and miss isolation) and 163% (for gsr, where loop unrolling has
a large impact on code size) for the cache miss isolation phase, and between 0%
(for gsr, where there are enough cache misses in the loop body to overlap with-
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out further program transformations) and 38% (for madd, where loop shifting
is needed to reduce the intra-body cache dependences) for the second phase of
the algorithm.

We use a heuristic to limit the unrolling factor. As a result, some of the
benchmarks produced approximate cache miss isolation (e.g., idct). Even in
such imperfect miss isolation, the miss traffic optimization algorithm produced
performance improvements. Code size increase is traded off against perfor-
mance improvement. By permitting more unrolling and shifting, better miss
isolation and timing can be obtained, resulting in higher performance improve-
ment. For instance, idct has small code size increase and smaller performance
improvement (37%), while dequant has large increase in code size, but also large
performance gain (71%). Moreover, when the access patterns are uniform ac-
cross the application, memory allocation optimizations such as alligning the
array to improve the overlap between cache misses and hits to a different cache
line (for instance through array padding [PDN99]) can be used to replace the
loop shifting transformation, thus avoiding the code size increase.

The large performance gains obtained by isolating the cache misses and at-
taching accurate timing, are due to the better opportunities to hide the latency
of the lengthy memory operations. Furthermore, by loop shifting we reduce the
dependence chains in the loop body, and create further parallelism opportunities
between cache hits and misses to different cache lines. This effect is particu-
larly large in multimedia applications showing high spatial locality in the array
accesses (present in the original access pattern, or after cache optimizations
such as tiling[PDN99]).

5.3.4 Related Work
We have not seen any prior work that directly addresses compiler manage-

ment of cache misses using cache analysis and accurate timing to aggressively
schedule the cache miss traffic. However, related work exists in 3 areas: (I)
cache optimizations, which improve the cache hit ratio through program trans-
formations and memory allocation, (II) cache behavior analysis, and cache hit
prediction, and (III) memory timing extraction and exploitation.

I. Cache optimizations improving the cache hit ratio have been extensively
addressed by both the embedded systems community [PDN99])
and the main-stream compiler community ([Wol96a]). Loop transformations
(e.g., loop interchange, blocking) have been used to improve both the temporal
and spatial locality of the memory accesses. Similarly, memory allocation
techniques (e.g., array padding, tiling) have been used in tandem with the loop
transformations to provide further hit ratio improvement. Harmsze et. al.
[HTvM00] present an approach to allocate and lock the cache lines for stream
based accesses, to reduce the interference between different streams and random
CPU accesses, and improve the predictability of the run-time cache behavior.



106 MEMORY ARCHITECTURE EXPLORATION

However, often cache misses cannot be avoided due to large data sizes, or simply
the presence of data in the main memory (compulsory misses). To efficiently
use the available memory bandwidth and minimize the CPU stalls, it is crucial
to aggressively schedule the cache misses.

Pai and Adve [PA99] present a technique to move cache misses closer to-
gether, allowing an out-of-order superscalar processor to better overlap these
misses (assuming the memory system tolerates a large number of outstanding
misses). Our technique is orthogonal, since we overlap cache misses with cache
hits to a different cache line. That is, while they cluster the cache misses to fit
into the same superscalar instruction window, we perform static scheduling to
hide the latencies.

Data prefetching is another approach to improve the cache hit ratio used in
general purpose processors. Software prefetching [CKP91], [GGV90], [MLG92],
inserts prefetch instructions into the code, to bring data into the cache early, and
improve the probability it will result in a hit. Hardware prefetching [Jou90],
[PK94] uses hardware stream buffers to feed the cache with data from the main
memory. On a cache miss, the prefetch buffers provide the required cache line
to the cache faster than the main memory, but comparatively slower than the
cache hit access. While software prefetching improves the cache hit ratio, it
does not aggressively hide the latency of the remaining cache misses. Simi-
larly, hardware prefetching improves the cache miss servicing time, but does
not attempt to hide the latency of the stream buffer hits, and the stream buffer
misses. We complement this work by managing the cache miss traffic to better
hide the latency of such operations. Moreover, prefetching produces additional
memory traffic [PK94], generating a substantial strain on the main memory
bandwidth, due to redundant main memory accesses (e.g., by reading from the
main memory data which is already in the cache), and often polluting the cache
with useless data. While this may be acceptable for general purpose processors,
due to the large power consumption of main memory accesses, in embedded ap-
plications the increased power consumption due to the extra memory accesses
is often prohibitive. Furthermore, the main memory bandwidth is often limited,
and the extra traffic along with the additional prefetch instructions and address
calculation may generate a performance overhead which offsets the gains due
to prefetching. We avoid these drawbacks by not inserting extra accesses to the
memory subsystem, but rather scheduling the existing ones to better utilize the
available memory bandwidth. We thus avoid the additional power consumption
and performance overhead, by specifically targeting the main memory band-
width, through an accurate timing, pipelining and parallelism model of the
memory subsystem.

II. Cache behavior analysis predicts the number/moment of cache hits and
misses, to estimate the performance of processor-memory systems [AFMW96],
to guide cache optimization decisions [Wol96a], to guide compiler directed
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prefetching [MLG92] or more recently, to drive dynamic memory sub-system
reconfiguration in reconfigurable architectures [JCMH99], We use
the cache locality analysis techniques presented in [MLG92], [Wol96a] to rec-
ognize and isolate the cache misses in the compiler, and then schedule them to
better hide the latency of the misses.

III. Additional related work addresses extraction and utilization of accu-
rate memory timing in the context of interface synthesis [COB95], [Gup95],
hardware synthesis [LKMM95], [PDN98], and memory-aware compilation
[GDN00]. However, none of these approaches addresses intelligent manage-
ment of cache miss traffic, and related optimizations. We complement this
work by using the accurate timing information to better schedule the cache
miss operations.

Our miss traffic optimization technique uses such an accurate timing model
to manage the miss traffic and aggressively overlap the memory accesses, ef-
ficiently utilizing the memory bandwidth. Our approach works also in the
presence of already optimized code (for instance cache hit ratio optimizations
[PDN99]), by using accurate timing, pipelining and parallelism information to
better manage the memory accesses beyond cache hits, and further improve the
system performance. We first predict and isolate the cache misses in the ap-
plication. We then use the exact timing and pipelining information in the form
of operation timings [GDN00] and reservation tables [GHDN99] to schedule
these cache misses. By allocating a higher priority to the transfers between
the main memory and the cache, we ensure that the main memory bandwidth,
which usually represents the bottleneck in memory-intensive applications, is
effectively used, and the latencies are efficiently hidden, generating significant
performance improvements.

5.4 Summary
In this chapter we presented an approach which allows the compiler to exploit

efficient memory access modes, such as page-mode and burst-mode, offered by
modern DRAM families. We hide the latency of the memory operations, by
marrying the timing information from the memory IP module with the pro-
cessor pipeline timings, to generate accurate operation timings. Moreover, we
use cache behavior analysis together with accurate cache hit/miss timing infor-
mation and loop transformations to better target the processor/memory system
architecture.

Traditionally, the memory controller accounted for memory delays, by freez-
ing the pipeline whenever memory operations took longer then expected. How-
ever, the memory controller has only a local view of the code, and can perform
only limited optimizations (e.g., when reading an element which is already in
the row buffer, it avoids the column decode step). In the presence of efficient
memory accesses, it is possible to better exploit such features, and better hide
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the latency of the memory operations, by providing the compiler with accurate
timing information for the efficient memory accesses, and allowing it to per-
form more global optimizations on the input behavior. Moreover, by providing
the compiler with cache hit/miss prediction and accurate timing, we perform
more global optimizations, to exploit the parallelism available in the memory
subsystem, and better hide the latency of the miss accesses.

By better exploiting the efficient memory access modes provided by modern
DRAM families and better hiding of the memory operation latencies through
the accurate timing information, we obtained significant performance improve-
ments. Furthermore, in the context of Design Space Exploration (DSE), our
approach provides the system designer with the ability to evaluate and explore
the use of different memory modules from the IP library, with the memory-
aware compiler fully exploiting the efficient access modes of each memory
component. We presented a set of experiments which separate out the gains
due to the more accurate timing, from the gains due to the efficient access mode
optimizations and access modes themselves. The average improvement was
23.9% over the schedule that exploits the access mode without detailed timing.

The average performance improvement for using cache hit/miss information
to better model the memory access timing was 34.1% over the schedule using
the traditional optimistic timing model. By further optimizing the cache miss
traffic, an additional 21.3% average improvement was obtained, generating an
overall 61.6% average improvement over the traditional approach.

The Memory-aware Compilation approach presented in this chapter has been
implemented. We use the EXPRESSION language to describe the memory
architecture, and automatically extract the timing and resource information
needed by the compiler. The experimental results have been obtained using our
SIMPRESS cycle accurate simulator.



Chapter 6

EXPERIMENTS

In the previous chapters we presented experiments showing the performance,
cost, and power improvements obtained by our individual optimization and ex-
ploration steps. In this chapter we combine these techniques into a set of global
experiments, presenting results on our overall Hardware/Software Memory Ex-
ploration methodology. We integrate our Memory Architecture Exploration,
Connectivity Exploration, and Memory-Aware Compilation approaches, and
present our unified experimental results on a set of embedded multimedia and
scientific applications.

6.1 Experimental setup
We simulated the design alternatives using two simulator configurations: (a)

for early estimation of the memory and connectivity architecture behavior we
used our simulator based on the SIMPRESS [MGDN01] memory model, and
SHADE [CK93], and (b) for more accurate simulation of the memory system
together with the actual processor, we simulated the design alternatives using
our simulator based on the SIMPRESS [MGDN01] memory model, and the
Motorola PowerPC simulator. We assumed a processor based on a VLIW
version of the Motorola PowerPC [Pow].

We compiled the applications using our EXPRESS compiler, in
two configurations: (I) a traditional compiler configuration, where the compiler
optimistically schedules the memory operations, assuming the fastest memory
access, and (II) the Memory-aware configuration, where the compiler uses
accurate timing and resource models of the memory architectures. In order
to verify the quality of the code generated by our compiler for the PowerPC
processor, we compared our EXPRESS compiler for the PowerPC with the
native Motorola compiler, and obtained similar results. We estimated the cost of
the memory architectures (in equivalent basic gates) using figures generated by



110 MEMORY ARCHITECTURE EXPLORATION

the Synopsys Design Compiler [Syn], and an SRAM cost estimation technique
from

6.2 Results
We used the following multimedia and scientific benchmarks: Compress and

Li (from SPEC95), and Vocoder (a GSM voice encoding application).

6.2.1 The Compress Data Compression Application
Compress is a data compression application from SPEC95. The algorithm

is based on a modified Lempel-Ziv method (LZW), which finds the common
substrings and replaces them with a variable size code. We use the main com-
pression and decompression routines from the Compress benchmark (from
SPEC95) to illustrate the performance, and cost trade-offs generated by our
approach. The Compression and decompression routines contain a varied set
of access patterns, providing interesting memory customization opportunities.

We explore the memory architecture and compiler in three main phases: (I)
Memory Module Exploration, customizing the memory architecture based on
the most active access patterns in the application, (II) Connectivity exploration,
evaluating and selecting a set of connectivity architectures to implement the
communication required by the memory architecture, and (III) Memory-Aware
Compilation, exploring the memory architecture in the presence of the full
system, containing the Memory Architecture, the CPU, and the Memory Aware
Compiler.

(I) Starting from the input application, we first evaluate and explore different
memory architectures, by mixing and matching memory modules from a mem-
ory IP library. We guide the exploration towards the most promising designs,
pruning out the non-interesting parts of the design space. Figure 6.1 presents
the memory design space exploration of the access pattern customizations for
the Compress application. The Compress benchmark exhibits a large variety of
access patterns providing many customization opportunities. The x axis repre-
sents the cost (in number of basic gates), and the y axis represents the overall
miss ratio (the miss ratio of the custom memory modules represents the number
of accesses where the data is not ready when it is needed by the CPU, divided
by the total number of accesses to that module).

The design points marked with a circle represent the memory architectures
chosen during the exploration as promising alternatives, and fully simulated
for accurate results. The design points marked only with a dot represent the
exploration attempts evaluated through fast time-sampling simulation, from
which the best cost/gain tradeoff is chosen at each exploration step.

The miss ratio of the Compress application varies between 22.14% for the
initial cache-only architecture (for a cost of 319,634 gates), and 11.72% for a
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memory architecture where 3 access pattern clusters have been mapped to cus-
tom memory modules (for a cost of 335,391 gates). Based on a cost constraint
(or alternatively on a performance requirement), the designer can select the
memory architectures that best matches the goals of the system. The selected
memory architectures are considered for further exploration.

In order to validate our space walking heuristic, and confirm that the chosen
design points follow the pareto-curve-like trajectory in the design space, in
Chapter 4.2 we compared the design points generated by our approach to the full
simulation of the design space considering all the memory module allocations
and access pattern cluster mappings for the Compress example benchmark;
we found that indeed, our exploration heuristic successfully finds the most
promising designs, without requiring full simulation of the entire design space.

(II) After selecting a set of memory modules to match the access patterns
in the application, we perform connectivity exploration, by evaluating a set of
connectivity modules from a connectivity IP library. For each of the selected
memory configurations from the previous step, multiple connectivity architec-
tures are possible: different standard on-chip busses (e.g., AMBA AHB, ASB,
etc.) with different bit-widths, protocols, and pipelining, MUXes and dedicated
connections are available, each resulting in different cost/performance trade-
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offs. For each selected memory architecture, we evaluate and select the most
promising connectivity architectures.

Figure 6.2 presents the connectivity exploration results. The x axis represents
the cost (in number of basic gates), and the y axis represents the average memory
latency, including the memory modules and connectivity latencies. We select
memory and connectivity architectures following the pareto curve-like shape,
and consider them for further exploration in the third phase of our approach.

In order to verify that our Connectivity Design Space Exploration (DSE)
approach successfully finds the points on the pareto curve, in Chapter 4.3 we
compare the exploration algorithm results with the actual pareto curve obtained
by fully simulating the design space: while in general, due to its heuristic
nature our algorithm is not guaranteed to find the best architectures, in practice
it follows the pareto curve rather well.

(III) Once we have selected the most promising memory and connectivity
architecture for the input application, we evaluate the behavior of the mem-
ory system considering the complete system, consisting of the Application, the
Memory Architecture, and the Memory Aware Compiler. We use our EXPRESS
Memory-Aware compiler to generate code for the selected designs, using ac-
curate timing and resource information on the architectures. We compare the
results to the code generated by the EXPRESS compiler, assuming optimistic
timing information for the memory accesses. This optimistic scheduling is
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the best alternative available to the traditional optimizing compiler, short of an
accurate timing model.

Figure 6.3 shows the exploration results using both the Memory Aware Com-
piler, where for each architecture we extract and use the accurate timing and
resource information in the compiler, and the Traditional optimizing compiler,
where we schedule the code optimistically, and rely on the memory controller
to account for the longer delays. The x axis represents the cost in number of
gates, while the y axis represents the cycle count. The diamond shapes (archi-
tectures a through h) represent the traditional optimizing compiler, while the
squares (architectures m through u) represent the Memory Aware Compiler.
Configurations a through h represent the most promising traditional compiler
designs, while architectures m through u represent the most promising Memory
Aware Compiler designs.

Starting from the traditional memory architecture and compiler configura-
tion, our Hardware/Software Memory Exploration approach explores a much
wider design space, beyond configurations that were traditionally considered.
The designs a and b represent the traditional, simple cache architecture and
connectivity configurations, together with an optimizing compiler which as-
sumes an optimistic timing model for the architecture. Instead, our approach
proposes architectures c through h, containing special memory modules, such
as linked-list DMAs, SRAMs, stream buffers, etc., to target the access patterns
in the application, and significantly improve the match between the application
and the memory architecture. Next we retarget the Memory Aware Compiler to
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each such architecture, by providing accurate timing and resource information
to the compiler, and further improve the system behavior. Designs m and n
represent the traditional simple cache hierarchy with two different connectivity
architectures, using our Memory Aware Compiler. By using accurate timing,
resource, pipelining and parallelism information, the compiler can better hide
the latency of the memory operations (designs m and n), further improving
the performance (compared to the corresponding designs a and b, using the
traditional optimistic compiler). Designs o through u represent novel memory
architectures, and use the Memory Aware Compiler, to further expand the de-
sign space explored. Our Hardware/Software Memory Exploration approach
reduces the cycle count of the Compress kernel from 67431 to 40702 cycles,
for a cost increase from 603113 to 810267 gates. Moreover, a set of interme-
diate performance/cost tradeoffs are offered between these points (represented
by the design points connected through the dotted line). Thus the designer can
choose the memory, connectivity, and compiler configuration that best matches
the system goals.

6.2.2 The Li Lisp Interpreter Application

The Li benchmark (from SPEC95) is a lisp interpreter, containing many
dynamic memory data structures, such as linked lists. We use the garbage col-
lection routine from Li to show the utility of our approach, since the garbage
collection part is activated very often, contributing to large portion of the mem-
ory accesses in the overall application.

Figure 6.4 shows the memory modules and connectivity exploration for the
garbage collection in Li. The x axis represents the cost of the memory and
connectivity architectures, and the y axis represents the average memory latency
per access. The points represented by a square are the memory and connectivity
designs selected for further exploration.

Figure 6.5 shows the overall Hardware/Software exploration results for the
garbage collection in Li. Again, starting from the traditional memory architec-
tures, containing a simple cache, we memory architectures using stream buffers,
and diverse connectivity modules. The designs d and e generate a roughly 23%
performance improvement over the traditional cache only design (b). More-
over, by providing accurate timing, resource, and pipelining information to
the Memory Aware Compiler, the overall system behavior is further improved.
Architecture q generates a roughly 50% performance improvement over the
traditional cache-only architecture using the traditional memory transparent
compiler (design b).
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6.2.3 The Vocoder Voice Coding Application
The Vocoder benchmark is a GSM voice coding application. We use the

routine computing the LP residual information from the Vocoder application to
demonstrate the improvements generated by our approach.

Starting from the access patterns in the application, we perform memory
and connectivity exploration, by selecting different memory and connectivity
modules from an IP library. Figure 6.6 shows the memory and connectivity
architecture exploration results. The x axis represents the cost of the memory
system, and the y axis represents the average memory latency per access. The
selected memory and connectivity architectures (the pareto curve represented
by a line in the figure) are then used for further exploration, considering the
complete system, including the Memory Aware Compiler. Figure 6.7 shows
the Hardware/Software exploration results.

Starting from the traditional memory architecture, containing a small cache
and a bus-based or dedicated connection (architectures a, b and c), we evaluate
the use of a stream buffer to implement a stream-like memory access pattern,
together with bus and MUX-based connections (architectures d and e). Next,
we retarget the Memory Aware Compiler, to account for the specific timings,
resources, and pipelining in each such explored architectures, to further hide
the latency of the memory accesses. The design points m, n and o represent
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the traditional cache architectures, using the Memory Aware Compiler, while
the designs p and q represent the memory architectures using a stream buffer,
together with the Memory Aware Compiler.

6.3 Summary of Experiments
Clearly, by considering all three components of the embedded memory sys-

tem early during the design process: the Memory Architecture, the Application,
and the Memory Aware Compiler, it is possible to explore a design space well
beyond the one traditionally considered.

By using specialized memory modules, such as linked-list DMAs, stream
buffers, SRAMs, to match the access patterns in the application, in effect trans-
ferring some of the burden of memory accesses from software to hardware,
we substantially improve the system behavior. Moreover, by providing accu-
rate timing, resource, pipelining and parallelism information to the compiler
during the exploration to better hide the latency of the memory accesses, we
can generate further performance improvements. Through our combined early
rapid evaluation, and detailed Compiler-in-the-loop analysis, we cover a wide
range of design alternatives, allowing the designer to efficiently target the sys-
tem goals. Furthermore, by pruning the non-interesting designs, we guide the
search towards the most promising designs, and avoid fully simulating the de-
sign space.

The best cost/performance/power tradeoffs for different applications are pro-
vided by varied memory and connectivity architectures. Moreover, typically
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different applications have divergent cost, performance and power require-
ments. Finding the most promising designs through analysis alone, without
such an exploration framework is very difficult. Our experiments show that by
performing early design space exploration, followed by a detailed evaluation
of the designs using Memory Aware Compiler to efficiently exploit the archi-
tecture characteristics, it is possible to efficiently explore the design space, and
significantly improve the memory system behavior.



Chapter 7

CONCLUSIONS

7.1 Summary of Contributions

Recent trends, such as the ability to place more transistors on the same chip,
as well as increased operating speeds have created a tremendous pressure on
the design complexity and time-to-market. Moreover, in today's embedded sys-
tems memory represents a major bottleneck in terms of cost, performance, and
power. With the increased processor speeds, the traditional memory gap is con-
tinuously exacerbated. More aggressive memory architectures, exploiting the
needs of the access patterns present in the embedded application, together with
Memory Aware compilation, considering the specific features of the memory
modules (such as timings, pipelining, parallelism, special access modes, etc).
are required. Moreover, early Design Space Exploration (DSE), considering
all three elements of the embedded system: the Memory Architecture, the Ap-
plication Access Patterns, and the Memory Aware Compiler allows for rapid
evaluation of different design alternatives, allowing the designer to best match
the goals of the system.

In this book we presented such an approach, where we perform Memory Ar-
chitecture and Connectivity Exploration, together with Memory Aware Com-
pilation, using memory and connectivity modules from an IP library. We use
an Architectural Description Language (ADL) based approach, where the ADL
specification of the processor and memory system is used to capture the ar-
chitecture, and drive the automatic software toolkit generation, including the
Memory Aware Compiler, and Simulator. By extracting, analyzing and cluster-
ing the Access Patterns in the application we select specialized memory mod-
ules such as stream buffers, SRAMs, Linked-list DMAs, as well as traditional
modules, such as caches, and DRAMs from a memory IP library, exploring a
design space beyond the one traditionally considered. Furthermore, we provide



120 MEMORY ARCHITECTURE EXPLORATION

explicit memory timing, pipelining and parallelism information to a Memory-
Aware Compiler, performing global optimizations to better hide the latency of
the lengthy memory operations.

By using our two-phased approach, starting with an early architecture ex-
ploration, to guide the search towards the most promising designs, followed by
our Compiler-in-the-loop detailed evaluation of the architectures we are able to
efficiently explore the memory design alternatives without fully simulating the
design space.

We presented a set of experiments on a set of large real-life multimedia
and scientific applications, showing significant performance improvements, for
varied cost and power footprints.

7.2 Future Directions
The work presented in this book can be extended in different directions in

the future.
With the advance of memory technology, new modules exhibiting diverse

features will continuously appear. While our approach covers features such as
any level of pipelining and parallelism, it is likely that novel idiosyncrasies of
such modules will require novel optimizations. In order to fully exploit the
capabilities of such memory modules, compiler techniques to account for these
features will be needed.

The exploration approach we presented is targeted towards the data memory
accesses and data memory architecture. Similar techniques can be used for the
instruction memory accesses, by employing memory modules such as instruc-
tion caches, on-chip ROMs, and more novel modules, such as trace caches.

The exploration approach we presented uses a heuristic to prune the design
space and guide the search towards the most promising designs. Providing dif-
ferent space walking techniques, such as multi-criteria optimizations, or Integer
Linear Programming (ILP) based techniques can further improve the optimality
of the system.

In this book we focused mainly on the software part of a Hw/Sw Embedded
System. Considering the interaction between the hardware on-chip ASICs and
the CPU cores, using different memory sharing and communication models is
a very interesting direction of research. Another possible extension is using
multicore-based System-on-chip, containing multiple CPU cores, ASICs, and
memory IP modules, further raising the level of abstraction.
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